CONCURRENT KLEENE ALGEBRA, A DONE DEAL Pomset lancuaces and concurrent Kleene algebras

Séminaire Automates - NovemBer 24, 2017

Paul Brunet', Damien Pous², Geora Struth ${ }^{3}$, Tobias Kappé, Alexandra Silva', Bas Luttik ${ }^{4}$, and Fasio Zanasi'

University College London', ENS de Lyon - CNR S^{2}, University of Sheffield ${ }^{3}$, Eindhoven University of Technology ${ }^{4}$

Kleene Algebra

Equivalence of sequential procrams

$$
(x:=1 ; y:=2) ;(x:=y \oplus y:=x) \quad \equiv \quad x:=1 ;(y:=2 ; x:=y) \oplus(y:=2 ; y:=x)
$$

Kleene Algebra

Equivalence of sequential procrams

$$
\begin{gathered}
(x:=1 ; y:=2) ;(x:=y \oplus y:=x) \quad \equiv \quad x:=1 ;(y:=2 ; x:=y) \oplus(y:=2 ; y:=x) \\
(x 1 \cdot y 2) \cdot(x y+y x)
\end{gathered}
$$

Kleene Algebra

Equivalence of sequential procrams

$$
\begin{gathered}
(x:=1 ; y:=2) ;(x:=y \oplus y:=x) \quad x:=1 ;(y:=2 ; x:=y) \oplus(y:=2 ; y:=x) \\
(x 1 \cdot y 2) \cdot(x y+y x)=x 1 \cdot(y 2 \cdot(x y+y x)) \quad \text { (associativity of } \cdot)
\end{gathered}
$$

Kleene Algebra

Equivalence of sequential programs

$$
\begin{aligned}
(x:=1 ; y:=2) ;(x:=y \oplus y:=x) \quad & \quad x:=1 ;(y:=2 ; x:=y) \oplus(y:=2 ; y:=x) \\
(x 1 \cdot y 2) \cdot(x y+y x) & =x 1 \cdot(y 2 \cdot(x y+y x)) \\
& =x 1 \cdot((y 2 \cdot x y)+(y 2 \cdot y x))
\end{aligned} \begin{aligned}
& \\
& \begin{aligned}
(\text { associativity of })
\end{aligned} \\
& \text { (distributivity) }
\end{aligned}
$$

Kleene Algebra

Equivalence of sequential programs

A Kleene algebra is structure $\langle K, 0,1,+, \cdot, \star\rangle$ such that:

1. $\langle K, 0,1,+, \cdot\rangle$ is an idempotent semiring;
2. $\forall x \in K, 1+x \cdot x^{\star}=x^{\star}$;
3. $\forall x, y, z \in K, x+y \cdot z \leq z \Rightarrow y^{\star} \cdot x \leq z$.

Theorem

$$
\text { KA } \vdash e=f \Leftrightarrow \mathcal{L}(e)=\mathcal{L}(f) .
$$

Kleene Algebra
 Equivalence of sequential procrams

finite state automata

Kleene Algebra

Equivalence of sequential procrams

Kleene Algebra

Equivalence of sequential procrams

CONCURRENT Kleene Algebras

Equivalence of parallel programs

$$
e, f \in \mathbb{E}::=0|1| a|e+f| e \cdot f\left|e^{\star}\right| e \| f
$$

Bi-Kleene Algebra

series-rational
pomset lancuaces

Concurrent Kleene Algebra

down-closed series-rational lancuaces

automata?

POMSETS

$$
P_{1}=\frac{\sqrt{2}}{\text { a }} \frac{2}{2}
$$

$$
P_{2}=
$$

POMSETS

POMSETS

$a \rightarrow b$

$$
P_{1} \| P_{2}=
$$

OUTLINE

$$
\mathcal{P}(\mathbb{P})
$$

OUTLINE

$$
\left.\right|_{\mathcal{P}(\mathbb{P})} ^{\mathbb{E}}
$$

OUTLINE

OUTLINE

OUTLINE

I. Brzozowski derivatives

OUTLINE

1. Brzozowski derivatives

OUTLINE

l. Brzozowski derivatives

OUTLINE

1. Brzozowski derivatives

OUTLINE

1. Brzozowski derivatives

OUTLINE

l. Brzozowski derivatives

OUTLINE

1. Brıozowski derivatives

OUTLINE

l. Bryozowski derivatives

OUTLINE

l. Brzozowski derivatives

OUTLINE

QUTLINE Kappé, Brunet, Luttik, Silva $\frac{1}{T}$ Zanasi, "Brzozowski Goes Concurrent", 2017

I. Brzozowski derivatives

RATIONAL POMSET LANGUAGES

$$
e, f \in \mathbb{E}::=a|0| 1|e \cdot f| e \| f|e+f| e^{\star} .
$$

RATIONAL POMSET LANGUAGES

$$
e, f \in \mathbb{E}::=a|0| 1|e \cdot f| e \| f|e+f| e^{\star} .
$$

$$
\begin{aligned}
& {[a]:=\{\mathbb{N} \mathrm{H}\}} \\
& {[0]:=\emptyset} \\
& \llbracket e \cdot f \rrbracket:=\llbracket e \rrbracket \cdot \llbracket f \rrbracket \\
& \llbracket e^{*} \rrbracket:=\bigcup_{n \in \mathbb{N}} \llbracket e \rrbracket^{n} \\
& \text { [1] :=\{w }\} \\
& \llbracket e+f \rrbracket:=\llbracket e \rrbracket \cup \llbracket f \rrbracket \\
& \llbracket e \| f \rrbracket:=\llbracket e \rrbracket \rrbracket \llbracket \llbracket f \rrbracket
\end{aligned}
$$

RATIONAL POMSET LANGUAGES

$$
\begin{aligned}
& e, f \in \mathbb{E}::=a|0| 1|e \cdot f| e \| f|e+f| e^{\star} . \\
& \text { 【a】 : = \{ive a }\} \\
& \text { 〔0]:= } \\
& \llbracket e \cdot f \rrbracket:=\llbracket e \rrbracket \cdot \llbracket f \rrbracket \\
& \llbracket e^{\star} \rrbracket:=\bigcup_{n \in \mathbb{N}} \llbracket e \rrbracket^{n} \\
& \text { 【1] : }=\{\text { जिए }\} \\
& \llbracket e+f \rrbracket:=\llbracket e \rrbracket \cup \llbracket f \rrbracket \\
& \llbracket e\|f \rrbracket:=\llbracket e \rrbracket\| \llbracket f \rrbracket
\end{aligned}
$$

Definition
A set of pomsets S is called a rational pomset lancuage if there is an expression $e \in \mathbb{E}$ such that $S=\llbracket e \bar{\rrbracket}$ ．

POMSET AUTOMATA

Sequential transition function

$$
\delta(2, e)=8
$$

POMSET AUTOMATA

FROM EXPRESSIONS TO AUTOMATA Brzozowski goes concurrent Deanitions

1. Build an infinite pomset automaton:

FROM EXPRESSIONS TO AUTOMATA
 Brzozowski goes concurrent Deanitions

1. Build an infinite pomset automaton:

- states are expressions;

FROM EXPRESSIONS TO AUTOMATA
 Brzozowski goes concurrent definitions

1. Build an infinite pomset automaton:

- states are expressions;
- the initial state is the expression we want to translate;

FROM EXPRESSIONS TO AUTOMATA
 Brzozowski goes concurrent Deanitions

1. Build an infinite pomset automaton:

- states are expressions;
- the initial state is the expression we want to translate;
- an expression is accepting if it contains 1 ;

FROM EXPRESSIONS TO AUTOMATA

Brzozowski goes concurrent Deanitions

1. Build an infinite pomset automaton:

- states are expressions;
- the initial state is the expression we want to translate;
- an expression is accepting if it contains 1 ;
- the sequential transitions are defined By sequential derivatives;

FROM EXPRESSIONS TO AUTOMATA

Brzozowski goes concurrent Defintions

1. Build an infinite pomset automaton:

- states are expressions;
- the initial state is the expression we want to translate;
- an expression is accepting if it contains 1 ;
- the sequential transitions are defined By sequential derivatives;
- the parallel transitions are defined By parallel derivatives.

FROM EXPRESSIONS TO AUTOMATA

Brzozowski goes concurrent Defintions

1. Build an infinite pomset automaton:

- states are expressions;
- the initial state is the expression we want to translate;
- an expression is accepting if it contains 1 ;
- the sequential transitions are defined By sequential derivatives;
- the parallel transitions are defined By parallel derivatives.

2. Quotient the automaton into a finite one, using the properties of $\langle 0,+\rangle$.

A VERY NAUGHTY AUTOMATON

A VERY NAUGHTY AUTOMATON

\bigcirc

A VERY NAUGHTY AUTOMATON

\square

A VERY NAUGHTY AUTOMATON

Fork-Acyclicity: there is a partial order over states \preceq such that:

$$
\frac{q \preceq r}{\gamma(q,\{r, s\})=\perp} \quad \overline{\delta(q, a) \preceq q} \quad \overline{\gamma(q, \varphi) \preceq q .}
$$

KleEne THEOREM

Theorem
A pomset lancuace is series-rational if and only if it is recocnisable with fork-acyclic pomset automata.

OUTLINE

I. Brzozowski derivatives

QUTLINE Brunet, Pous \& Struth, "On decidasility of concurrent Kleene aleebra", 2017

II. Decidability $\stackrel{1}{\boldsymbol{T}}$ Complexity

POMSET ORDER

POMSET ORDER

Gischer, "The equational theory of pomsets", 1988
Grabowski, "On partial languaces", 1981

TwO DECISION PROBLEMS

Notation

$$
\sqsubseteq S:=\left\{P \mid \exists P^{\prime} \in S: P \sqsubseteq P^{\prime}\right\} .
$$

TwO DECISION PROBLEMS

Notation

$$
\sqsubseteq S:=\left\{P \mid \exists P^{\prime} \in S: P \sqsubseteq P^{\prime}\right\} .
$$

biKA
Given two expressions e, f, are $\llbracket e \rrbracket$ and $\llbracket f \rrbracket$ equal?
CKA
Given two expressions e, f, are $\sqsubseteq \llbracket e \rrbracket$ and $\sqsubseteq \llbracket f \rrbracket$ equal?

LABELLED PETRI NETS

$1+$ skip

LABELLED PETRI NETS

$1+$ skip

LABELLED PETRI NETS

$1+$ skip

LABELLED PETRI NETS

1 skip
τ

LABELLED PETRI NETS

 $1+$ skip
 τ

LABELLED PETRI NETS

1 skip

LABELLED PETRI NETS

LABELLED PETRI NETS

1 skip

LABELLED PETRI NETS

1 skip

LABELLED PETRI NETS

$1+$ skip

LABELLED PETRI NETS

$1+$ skip

LABELLED PETRI NETS

LABELLED PETRI NETS

Pomset-trace
skip

RECOGNISABLE POMSET LANGUAGES

Lancuace generated By a net
$\llbracket \mathcal{N} \rrbracket$ is the set of pomset-traces of accepting runs of \mathcal{N}.

Definition
A set of pomsets S is a recocnisable pomset lancuace if there is a net \mathcal{N} such that $S=\llbracket \mathbb{N} \rrbracket$.

READING A POMSET IN A NET

skip

FROM EXPRESSIONS TO AUTOMATA

$$
\mathcal{N}(0):=\rightarrow \mathrm{O} \quad \mathrm{O}(1):=\rightarrow \mathrm{O} \rightarrow \quad \mathcal{N}(a):=\rightarrow \mathrm{O} \rightarrow a \rightarrow 0 \rightarrow
$$

SolVing biKA

Lemma

$$
\llbracket e \rrbracket=\llbracket \mathcal{N}(e) \rrbracket .
$$

Rational pomset lancuages are recocnisable.

Solving biKA

Lemma

$$
\llbracket e \rrbracket=\llbracket \mathcal{N}(e) \rrbracket .
$$

Corollary

Rational pomset lancuaces are recocnisable.

Theorem

Testing containment of pomset-trace languages of two Petri nets is an ExpSpace-complete problem.
Jategaonkar $\stackrel{+}{T}$ Meyer, "Deciding true concurrency equivalences on safe, finite nets", 1996
Corollary
The problem biKA lies in the class ExpSpace.

WHAT ABOUT CKA?

$$
{ }^{5}[e]=\sqsubseteq_{[f]}
$$

WHAT ABOUT CKA?

WHAT ABOUT CKA?

What About CKA?

$$
\begin{aligned}
& \begin{array}{rccc}
\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket \Leftrightarrow & \sqsubseteq \llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket & \wedge & \sqsubseteq \llbracket e \rrbracket \supseteq \sqsubseteq \llbracket f \rrbracket \\
& \Leftrightarrow & \llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket & \wedge \\
\boxed{C l e \rrbracket} \supseteq \llbracket f \rrbracket
\end{array} \\
& \Leftrightarrow \llbracket \mathcal{N}(e) \rrbracket \subseteq \sqsubseteq \llbracket \mathcal{N}(f) \rrbracket \wedge \sqsubseteq^{\square} \mathbb{N}(e) \rrbracket \supseteq \llbracket \mathcal{N}(f) \rrbracket
\end{aligned}
$$

WHAT ABOUT CKA?

$$
\begin{aligned}
& \begin{array}{rccc}
\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket \Leftrightarrow & \sqsubseteq \llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket & \wedge & \sqsubseteq \llbracket e \rrbracket \supseteq \sqsubseteq \llbracket f \rrbracket \\
& \Leftrightarrow & \llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket & \wedge
\end{array} \quad \sqsubseteq \llbracket e \rrbracket \supseteq \llbracket f \rrbracket \\
& \Leftrightarrow \llbracket \mathcal{N}(e) \rrbracket \subseteq \sqsubseteq \llbracket \mathcal{N}(f) \rrbracket \wedge \sqsubseteq^{〔} \mathbb{N}(e) \rrbracket \supseteq \llbracket \mathcal{N}(f) \rrbracket
\end{aligned}
$$

Problem
Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\operatorname{Pom}\left(R_{1}\right) \sqsubseteq \operatorname{Pom}\left(R_{2}\right) ?
$$

IDEA OF THE ALGORITHM

Problem
Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\operatorname{Pom}\left(R_{1}\right) \sqsubseteq \operatorname{Pom}\left(R_{2}\right) ?
$$

IDEA OF THE ALGORTTHM

Problem
Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P} \circ m\left(R_{2}\right) ?
$$

- Build an automaton \mathscr{A}_{1} for $\llbracket \mathcal{N}_{1} \rrbracket$

IDEA OF THE ALGORTTHM

Problem
Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P o m}\left(R_{2}\right) ?
$$

- Build an automaton \mathscr{A}_{1} for $\llbracket \mathcal{N}_{1} \rrbracket$
- Build an automaton \mathscr{A}_{2} for $\llbracket \mathcal{N}_{1} \rrbracket \cap \llbracket \mathcal{N}_{2} \rrbracket$

IDEA OF THE ALGORTTHM

Problem

Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P} \circ m\left(R_{2}\right) ?
$$

- Build an automaton \mathscr{A}_{1} for $\llbracket \mathcal{N}_{1} \rrbracket$
- Build an automaton \mathscr{A}_{2} for $\left.\llbracket \mathcal{N}_{1}\right] \cap \llbracket\left[\mathcal{N}_{2}\right]$
- $\llbracket \mathcal{N}_{1} \rrbracket \subseteq \sqsubseteq \llbracket \mathcal{N}_{2} \rrbracket$ if and only if $\mathcal{L}\left(\mathscr{A}_{1}\right)=\mathcal{L}\left(\mathscr{A}_{2}\right)$.

TRANSITION AUTOMATON

TRANSITION AUTOMATON

MASSAGING RUNS

MASSAGING RUNS

$$
\begin{aligned}
& \text { (a) }
\end{aligned}
$$

MASSAGING RUNS

$$
\begin{aligned}
& \text {-(0) (0) }
\end{aligned}
$$

MASSAGING RUNS

MASSAGING RUNS

MASSAGING RUNS

REDUCTION TO AUTOMATA

Let \mathcal{N}_{1} and \mathcal{N}_{2} Be some polite nets, of size n, m.
Lemma
There is an automaton $\mathscr{A}\left(\mathcal{N}_{1}\right)$ with $\mathcal{O}\left(2^{n}\right)$ states that recoenises the set of accepting runs in \mathcal{N}_{1}.

REDUCTION TO AUTOMATA

Let \mathcal{N}_{1} and \mathcal{N}_{2} Be some polite nets, of size n, m.
Lemma
There is an automaton $\mathscr{A}\left(\mathcal{N}_{1}\right)$ with $\mathcal{O}\left(2^{n}\right)$ states that recocnises the set of accepting runs in \mathcal{N}_{1}.

Lemma

There is an automaton $\mathcal{N}_{1} \prec \mathcal{N}_{2}$ with $\mathcal{O}\left(2^{n+m+n m}\right)$ states that recocnises the set of accepting runs in \mathcal{N}_{1} whose pomset Belonas to ${ }^{\square}\left[\mathcal{N}_{2}\right]$.

DECIDABILITY + COMPLEXITY

Theorem
Given two expressions $e, f \in \mathbb{E}$, we can test if $\llbracket e \rrbracket \subseteq \llbracket \llbracket f \rrbracket$ in ExpSpace.
Proof.

1. Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
2. Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
3. compare them.

DECIDABILITY + COMPLEXITY
Theorem
Given two expressions $e, f \in \mathbb{E}$, we can test if $\llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket$ in ExpSpace.
Proof.

1. Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
2. Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
3. compare them.

Theorem
The problem CKA is ExpSpace-complete.
Proof.

1. In the class ExpSpace: see above.
2. ExpSpace-hard: Reduction from the universality problem for regular expressions with interleaving.
Mayer \& Stockmeyer, "The complexity of word problems - this time with interleaving", 1994

OUTLINE

OUTLINE

Kappé, Brunet, Silva $\underset{\sim}{c}$ Zanasi, "Concurrent Kleene Algebra: Free Model and Completeness", 2017 (submitted)
III. Completeness

Kleene Alcebra

Equivalence of sequential programs

A Kleene algebra is structure $\langle K, 0,1,+, \cdot, \star\rangle$ such that:

1. $\langle K, 0,1,+, \cdot\rangle$ is an idempotent semirinc;
2. $\forall x \in K, 1+x \cdot x^{\star}=x^{\star}$;
3. $\forall x, y, z \in K, x+y \cdot z \leq z \Rightarrow y^{\star} \cdot x \leq z$.

Theorem

$$
\text { KA } \vdash e=f \Leftrightarrow \mathcal{L}(e)=\mathcal{L}(f) .
$$

BI-KLEENE ALGEBRA

A Bi-Kleene alcesra is structure $\langle K, 0,1,+, \cdot, \star, \|\rangle$ such that:

1. $\langle K, 0,1,+$,$\rangle is an idempotent semiring;$
2. $\langle K, 0,1,+, \|\rangle$ is a commutative idempotent semirinc;
3. $\forall x \in K, 1+x \cdot x^{\star}=x^{\star}$;
4. $\forall x, y, z \in K, x+y \cdot z \leq z \Rightarrow y^{\star} \cdot x \leq z$.

Theorem

$$
\mathrm{biKA} \vdash e=f \Leftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket .
$$

Laurence $\stackrel{\uparrow}{\boldsymbol{T}}$ Struth, "Completeness theorems for Bi-Kleene alGeBras and series-parallel rational pomset lancuages", 2O14

CONCURRENT KLEENE AlGEBRA

A concurrent Kleene alcerra is Bi-Kleene alcebra $\langle K, 0,1,+, \cdot, \star, \| \mid\rangle$ such that:

$$
(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d)
$$

CONCURRENT KLEENE AlGEBRA

A concurrent Kleene alcebra is Bi-Kleene algeBra $\langle K, 0,1,+, \cdot, \star|,\rangle$ such that:
$(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d)$

\sqsubseteq

CONCURRENT KLEENE ALGEBRA

A concurrent Kleene alcebra is Bi-Kleene algesra $\langle K, 0,1,+, \cdot, \star, \| \mid\rangle$ such that:

$$
(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d)
$$

\sqsubseteq

$$
\mathrm{CKA} \vdash e=f \Rightarrow \sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket .
$$

Hoare, Möller, Struth \# Wehrman, "Concurrent Kleene Algebra", 2009

SYNTACTIC CLOSURES ARE NICE...

Definition
An expression $e \downarrow$ is a closure of e if CKA $\vdash e \downarrow=e$ and $\llbracket e \downarrow \rrbracket=\sqsubseteq \llbracket e \rrbracket$.

SYNTACTIC CLOSURES ARE NICE...

Definition

Lemma
If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lancuaces.

```
Laurence # Algebras", (draft)
```


SYNTACTIC CLOSURES ARE NICE...

Lemma
If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lancuaces.

```
Laurence #
Algebras", (draft)
```

Proof. Assume $\square^{\sqsubseteq} \llbracket e \rrbracket={ }^{\sqsubseteq} \llbracket f \rrbracket$.

SYNTACTIC CLOSURES ARE NICE...

Definition
$=\left\lceil\right.$ ¢ ${ }^{\text {e] }}$.

Lemma
If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lancuaces.

```
Laurence }\stackrel{\rightharpoonup}{T}\mathrm{ Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft)
```

Proof. Assume $\sqsubseteq \llbracket e \rrbracket={ }^{\sqsubseteq} \llbracket f \rrbracket$.
By (2), it means that $\llbracket e \downarrow \rrbracket=\llbracket f \downarrow \rrbracket$.

SYNTACTIC CLOSURES ARE NICE...

LemMa

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lancuaces.

```
Laurence #
Algebras", (draft)
```

Proof. Assume $\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket$.
By (2), it means that $\llbracket e \downarrow \rrbracket=\llbracket f \downarrow \rrbracket$.
By compleness of biKA, it follows that biKA $\vdash e \downarrow=f \downarrow$, thus CKA $\vdash e \downarrow=f \downarrow$.

SYNTACTIC CLOSURES ARE NICE...

Definition
An expression $e \downarrow$ is a closure of e if $\overparen{\mathrm{CKA} \vdash e \downarrow=e}$ and $\overparen{\llbracket e \downarrow \rrbracket=[\llbracket \rrbracket}{ }^{(2)}$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lancuaces.

```
Laurence #
Algebras", (draft)
```

Proof. Assume $\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket$.
By (2), it means that $\llbracket e \downarrow \rrbracket=\llbracket f \downarrow \rrbracket$.
By compleness of biKA, it follows that biKA $\vdash e \downarrow=f \downarrow$, thus CKA $\vdash e \downarrow=f \downarrow$.
By (I) we Get that CKA $\vdash e=e \downarrow=f \downarrow=f$.

SYNTACTIC CLOSURES ARE NICE...

Definition
An expression $e \downarrow$ is a closure of e if $\overparen{\mathrm{CKA} \vdash e \downarrow=e}$ and $\overparen{\llbracket e \downarrow \rrbracket=[\llbracket \rrbracket}{ }^{(2)}$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lancuaces.

```
Laurence #
Algebras", (draft)
```

Proof. Assume $\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket$.
By (2), it means that $\llbracket e \downarrow \rrbracket=\llbracket f \downarrow \rrbracket$.
By compleness of biKA, it follows that biKA $\vdash e \downarrow=f \downarrow$, thus CKA $\vdash e \downarrow=f \downarrow$.
By (I) we Get that CKA $\vdash e=e \downarrow=f \downarrow=f$.

BUT DO THEY EXIST?

Let's try and compute the closure By induction:

BUT DO THEY EXIST?

Let's try and compute the dosure By induction:

- $0 \downarrow=0$
$-1 \downarrow=1$
- $a \downarrow=a$

BUT DO THEY EXIST?

Let's try and compute the closure By induction:

- $0 \downarrow=0$
- $1 \downarrow=1$
- $a \downarrow=a$
$-(e+f) \downarrow=e \downarrow+f \downarrow$

BUT DO THEY EXIST?

Let's try and compute the dosure By induction:

- $0 \downarrow=0$
- $1 \downarrow=1$
- $a \downarrow=a$
- $(e+f) \downarrow=e \downarrow+f \downarrow$
- $(e \cdot f) \downarrow=e \downarrow \cdot f \downarrow$

BUT DO THEY EXIST?

Let's try and compute the dosure By induction:

- $0 \downarrow=0$
- $1 \downarrow=1$
- $a \downarrow=a$
- $(e+f) \downarrow=e \downarrow+f \downarrow$
- $(e \cdot f) \downarrow=e \downarrow \cdot f \downarrow$
- $\left(e^{\star}\right) \downarrow=e \downarrow^{\star}$

BUT DO THEY EXIST?

Let's try and compute the closure By induction:

- $0 \downarrow=0$
- $1 \downarrow=1$
- $a \downarrow=a$
- $(e+f) \downarrow=e \downarrow+f \downarrow$
- $(e \cdot f) \downarrow=e \downarrow \cdot f \downarrow$
- $\left(e^{\star}\right) \downarrow=e \downarrow^{\star}$
- $(e \| f) \downarrow=? ? ?$

... BUT DO THEY EXIST?

Let's try and compute the dosure By induction:

- $0 \downarrow=0$
- $1 \downarrow=1$
- $a \downarrow=a$
- $(e+f) \downarrow=e \downarrow+f \downarrow$
- $(e \cdot f) \downarrow=e \downarrow \cdot f \downarrow$
- $\left(e^{\star}\right) \downarrow=e \downarrow^{\star}$
- $(e \| f) \downarrow=? ? ?$

We strencthen our induction, By assuming that we have closures for 1. every strict suBterm of $e \| f$,
2. every term with smaller width than $e \| f$.

We write the corresponding strict ordering \prec.

WHO'S SMALLER THAN A PARALLEL PRODUCT?

PARALLEL SPLICING AND PRECLOSURE

Parallel splicing
Δ_{e} is a finite relation over \mathbb{E} such that:

$$
u \| v \in \llbracket e \rrbracket \Leftrightarrow \exists / \Delta_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

PARALLEL SPLICING AND PRECLOSURE

Parallel splicina
Δ_{e} is a finite relation over \mathbb{E} such that:

$$
u \| v \in \llbracket e \rrbracket \Leftrightarrow \exists / \Delta_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

$$
e \odot f=e\left\|f+\sum_{\mid \Delta_{e \mid f} r}(I \downarrow)\right\|(r \downarrow) .
$$

PARALLEL SPLICING AND PRECLOSURE

Parallel splicing
Δ_{e} is a finite relation over \mathbb{E} such that:

$$
u \| v \in \llbracket e \rrbracket \Leftrightarrow \exists / \Delta_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

$$
e \odot f=e\left\|f+\sum_{\mid \Delta_{\text {el| } f} r}(I \downarrow)\right\|(r \downarrow) .
$$

Lemma

$$
\begin{gathered}
u\|v \in \sqsubseteq \llbracket e\| f \rrbracket \Leftrightarrow u \| v \in \llbracket e \odot f \rrbracket . \\
\mathrm{CKA} \vdash e \odot f=e \| f .
\end{gathered}
$$

WHO'S SMALLER THAN A PARALLEL PRODUCT?

WHO'S SMALLER THAN A PARALLEL PRODUCT?

SEQUENTIAL SPLICING

Sequential splicing
∇_{e} is a finite relation over \mathbb{E} such that:

$$
u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists / \nabla_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

SEQUENTIAL SPLICING

Sequential splicing

∇_{e} is a finite relation over \mathbb{E} such that:

$$
u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists / \nabla_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

$$
u \cdot v \in \sqsubseteq \llbracket e\|f \rrbracket \Leftrightarrow u \cdot v \in \llbracket e\| f+\sum_{\substack{I_{e} \nabla_{e} r_{e} \\ I_{f} \nabla_{f} r_{f}}}\left(l_{e} \odot I_{f}\right) \cdot\left(r_{e} \| r_{f}\right) \downarrow \rrbracket
$$

SEQUENTIAL SPLICING

Sequential splicing
∇_{e} is a finite relation over \mathbb{E} such that:

$$
u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists / \nabla_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

$$
u \cdot v \in \sqsubseteq \llbracket e\|f \rrbracket \Leftrightarrow u \cdot v \in \llbracket e\| f+\sum_{\substack{I_{e} \nabla_{e} r_{e} \\ I_{f} \nabla_{f} r_{f}}}\left(l_{e} \odot l_{f}\right) \cdot\left(r_{e} \| r_{f}\right) \downarrow \rrbracket
$$

Problem: $r_{e} \| r_{f}$ is not always smaller than $e \| f .$.

AND THEN, SOME MAGIC HAPPENS...

AND THEN, SOME MAGIC HAPPENS...

- We repeat the construction to get successive equations, involving closures.

AND THEN, SOME MAGIC HAPPENS...

- We repeat the construction to get successive equations, involving closures.
- Only a finite number of unknown closures appear.

AND THEN, SOME MAGIC HAPPENS...

- We repeat the construction to get successive equations, involving closures.
- Only a finite number of unknown closures appear.
- These equations can Be structured as a linear system.

AND THEN, SOME MAGIC HAPPENS...

- We repeat the construction to get successive equations, involving closures.
- Only a finite number of unknown closures appear.
- These equations can Be structured as a linear system.
- With a fancy fixpoint theorem, we compute the least solution of the system.

AND THEN, SOME MAGIC HAPPENS...

- We repeat the construction to get successive equations, involving closures.
- Only a finite number of unknown closures appear.
- These equations can Be structured as a linear system.
- With a fancy fixpoint theorem, we compute the least solution of the system.
- This solution is a closure.

COMPLETENESS OF CKA

Lemma

Every series-rational expression admits a closure.
Theorem CKAト $e=f \Leftrightarrow \sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket$.

Implementation: https://doi.org/10.5281/zenodo.926651.

OUTLINE

I. Brzozowski derivatives

OUTLINE

II. Decidability $\stackrel{1}{\boldsymbol{T}}$ Complexity

OUTLINE

III. Completeness

FURTHER OUESTIONS

FURTHER QUESTIONS

- Can we extend the algorithm to a larger class of Petri nets?

FURTHER QUESTIONS

- Can we extend the algorithm to a larger class of Petri nets?
- What about the parallel star?

FURTHER QUESTIONS

- Can we extend the algorithm to a larger class of Petri nets?
- What about the parallel star?
- Can I have tests?

FURTHER QUESTIONS

- Can we extend the alkorithm to a larger class of Petri nets?
- What about the parallel star?
- Can I have tests?
- Might I dream of adding names?

FURTHER QUESTIONS

- Can we extend the algorithm to a larger class of Petri nets?
- What about the parallel star?
- Can I have tests?
- Might I dream of adding names?
- Insert you favourite operator here...

THAT'S ALL FOLKS!

Thank you!

See more at:
http://paul.brunet-zamansky.fr

OUTLINE

OUTLINE

I. Introduction
II. Pomset lancuaces and Brzozowski derivatives
III. Decidasility $\stackrel{1}{\boldsymbol{T}}$ Complexity
IV. Completeness
V. Summary and Outlook

BRZOZOWSKI GOES CONCURRENT BCN

$e \star f:= \begin{cases}f & \text { if } 1 \in \llbracket e \rrbracket \\ 0 & \text { otherwise } .\end{cases}$

$$
[x=y]:= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

BRZOZOWSKI GOES CONCURRENT CRCa

$e \star f:= \begin{cases}f & \text { if } 1 \in \llbracket e \rrbracket \\ 0 & \text { otherwise } .\end{cases}$

$$
[x=y]:= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

- Sequential derivatives: $\delta: \mathbb{E} \times \Sigma \rightarrow \mathbb{E}$

$$
\begin{gathered}
\delta(0, a)=0 \quad \delta(1, a)=0 \quad \delta(b, a)=[a=b] \quad \delta\left(e^{\star}, a\right)=\delta(e, a) \cdot e^{\star} \\
\delta(e \cdot f, a)=\delta(e, a) \cdot f+e \star \delta(f, a) \quad \delta(e+f, a)=\delta(e, a)+\delta(f, a) \\
\delta(e \| f, a)=e \star \delta(f, a)+f \star \delta(e, a) .
\end{gathered}
$$

BRZOZOWSKI GOES CONCURRENT BACR

$e \star f:= \begin{cases}f & \text { if } 1 \in \llbracket e \rrbracket \\ 0 & \text { otherwise. }\end{cases}$

$$
[x=y]:= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise. }\end{cases}
$$

- Sequential derivatives: $\delta: \mathbb{E} \times \Sigma \rightarrow \mathbb{E}$

$$
\begin{gathered}
\delta(0, a)=0 \quad \delta(1, a)=0 \quad \delta(b, a)=[a=b] \quad \delta\left(e^{\star}, a\right)=\delta(e, a) \cdot e^{\star} \\
\delta(e \cdot f, a)=\delta(e, a) \cdot f+e \star \delta(f, a) \quad \delta(e+f, a)=\delta(e, a)+\delta(f, a) \\
\delta(e \| f, a)=e \star \delta(f, a)+f \star \delta(e, a) .
\end{gathered}
$$

- Parallel derivatives: $\gamma: \mathbb{E} \times\binom{\mathbb{E}}{2} \rightarrow \mathbb{E}$

$$
\begin{gathered}
\gamma(0, \varphi)=0 \quad \gamma(b, \varphi)=0 \quad \gamma(1, \varphi)=0 \quad \gamma\left(e^{\star}, \varphi\right)=\delta(e, \varphi) \cdot e^{\star} \\
\gamma(e \cdot f, \varphi)=\gamma(e, \varphi) \cdot f+e \star \gamma(f, \varphi) \quad \gamma(e+f, \varphi)=\gamma(e, \varphi)+\gamma(f, \varphi) \\
\gamma(e \| f, \varphi)=[\varphi=\{e, f\}]+e \star \gamma(f, \varphi)+f \star \gamma(e, \varphi)
\end{gathered}
$$

