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KLEENE ALGEBRA
Equivalence of sequential proarams
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(XL-y2) - (xy +yx) =x1-(y2- (xy + yx)) (associativity of -)
=x1-((y2-xy)+ (y2-yx)) (distributivity)

Paul Brunet 2/42



KLEENE ALGEBRA

Equivalence of sequential proarams

A Kleene alaerra is structure (K,0, 1, +, -, x) such that:

1. (K,0,1,+, ) is an idempotent semiring;
2. Vx e K, 1+x-x"=x%
3.Vx,y,ze K, x+y - z<z=y" -x<z

Theorem

KAFe=fo L(e)=L(f).

Paul Brunet

3/42



KLEENE ALGEBRA
Equivalence of sequential proarams

Kleene Alzerra
AN

reagular languaces

v
finite state automata

Paul Brunet

/42



KLEENE ALGEBRA
Equivalence of sequential proarams

Completeness

Kleene Alzerra
AN

reagular languaces

v
finite state automata

Paul Brunet

/42



KLEENE ALGEBRA
Equivalence of sequential proarams

Completeness

Kleene Alzerra
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Kleene theorem
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CONCURRENT KLEENE ALGEBRAS
E.quivalence of parallel proarams
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Bi-Kleene Alcerra Concurrent Kleene Alcerra
series-rational down-closed
pomset languaces series-rational lancuaces
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@U?E_ENE ’Kappé, Brunet, Luttik, Silva & Z anasi, "Brzozowski Goes Concurrent”, 201
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RATIONAL POMSET LANGUAGES

e,feEx=a | 0| 1| e-f | el|lf| e+tf| e

[[aﬂ:={ g } m={ |}

[0] =0 [e + f] =[e] U [f]
le- ] =[e] - [f] le || 1 =[el Il [f]
[e] = | [e]”
neN

Definition
A set of pomsets S is called a8 rational pomset lanauace £ there is an
expression e € E such that S = [e].

Paul Brunet 9/42



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Paul Brunet



POMSET AUTOMATA

Seaquential transition function

5(2,e) =8
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POMSET AUTOMATA

o )

Seaquential transition function Parallel transition function

6(2,e)=8 v(1,{3.4}) =2
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Brzozowski coes conecurrent

1. Build an infinite pomset automaton:
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FROM EXPRESSIONS TO AUTOMATA
Brzozowski coes conecurrent

1. Build an infinite pomset automaton:

2. Quotient the automaton into a finite one, using the properties of (0, +).

Paul Brunet
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states are expressions;
the initial state is the expression we want to translate;
an expression is accepting i£ it contains 1;

the sequential transitions are defined By sequential derivatives

)

the parallel transitions are defined Ry parallel derivatives.
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A VERY NAUGHTY AUTOMATON

Fork-Acyclicity: there is a partial order over states < such that:

o o =4 S il
y(q.{r.s}h) =L d(g.a) 2 ¢q Y(q.9) 2 q
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KLEENE THEOREM

Theorem
A pomset lanauace is series-rational if and only i it is recoanisarle with

fork-acyalic pomset automata.

Paul Brunet 13/42
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SQ?E_ENE IBr‘ur\e:t, Pous = Struth, "On decidagility of concurrent Kleene alaerra”, 20(1
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POMSET ORDER

b

Detinition

P1 C P, if there is a function ¢ : P, — P; such that:
1. ¢ is a Bijection
2. p preserves larels
3. © preserves ordered pairs

‘ Gischer, "The equational theory of pomsets”, 988

‘ Grarowski, "On partial languaces”, 98]
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TWO DECISION PROBLEMS

Notation
s = {ENEEE=N R = A
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TWO DECISION PROBLEMS

Notation
s = {ENEEE=N R = A

biKA
Given two expressions e, f, are [e] and [f] equal?

CKA]

Given two expressions e, f, are =[e] and =[f] equal?

Paul Brunet 6742
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LABELLED PETRI NETS
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Transition-pomset
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LABELLED PETRI NETS

Pomset—trace
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Transition-pomset
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RECOGNISABLE POMSET LANGUAGES

|Lar\c=uac=e aenerated By a r\e—tI

|[[./\/ ] is the set of pomset—traces of accepting runs of N.

Definition

A set of pomsets S is a8 recoanisarle pomset lancuace if there is a net NV
such that S = [N].

Paul Brunet
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FROM EXPRESSIONS "E'@ AUE'GMA’E'A
N(0)=—0 O— (a) = >O0—fa}>0—
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SOLVING biKA

Lemma

[e] = [V ()]

Corollary
R ational pomset languaaes are recoanisakle.
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SOLVING biKA

Lemma

[e] = [V ()]

Corollary
R ational pomset languaaes are recoanisakle.

Theorem
Testina containment of pomset—trace languaces of two Petri nets is an

ExpSpace-complete proelem.

‘ Jatecaonkar = Meyer, "Deciding true concurrency equivalences on safe, finite nets", 1996

Corollary
The prorlem biKA lies in the class ExpSpace.

Paul Brunet /42
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WHAT ABOUT CKA?

Slel=CIfle Sl S5l A e] 2 =[]
&  [CSEIT A e] 2 [f]
& W (e)] € SV (A A SV (e)] 2 IV (7]

[
all
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WHAT ABOUT CKA?

=511 SISl A Cle) 2 O]
& [ICSEI] A Sl 21
& W (] € W (A1 A SV (@] 2 IV ()]

Proglem

Let N1, N> e well Behaved nets. Is it true that for every run R; of N
there is a run R, in A such that

Pom (Ry) T Pom(Rs)?
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IDEA OF THE ALGORITHM

Proelem

Let N1, N> e well Behaved nets. [s it true that for every run R; of N
there is a run R, in A5 such that

Pom (Ry) T Pom(R2)?

- Build an automaton < for [N]
- Build an automaton o4 for [Ni] N E[N;]

- [Mi] CE[N.] i and only i £ (a4) = L ().
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TRANSITION AUTOMATON
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REDUCTION TO AUTOMATA

Let N; and N> Be some polite nets, of size n, m.

Lemma
There is an automaton o7 (N1) with O(2") states that recoanises the set
of accepting runs in M.
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REDUCTION TO AUTOMATA

Let N; and N> Be some polite nets, of size n, m.
Lemma

There is an automaton o7 (N1) with O(2") states that recoanises the set
of accepting runs in M.

Lenmma
There is an automaton N; < N, with O (2"M"M) states that recoanises
the set Of accepting runs in i whose pomset Belonas 1o =[],
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DECIDABILITY + COMPLEXITY

Theorem
Given two expressions ¢, f € E, we can test if [e] C E[[f}] in ExpSpace.

Proo#f.
1. Build NV (e) and N (1),
2. Build & (N (e)) and N (e) < N (F);
3. compare them.
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DECIDABILITY + COMPLEXITY

Theorem
Given two expressions ¢, f € E, we can test if [e] C E[[f]] in ExpSpace.

Proo#f.
1. Build NV (e) and N (1),
2. Build & (N (e)) and N (e) < N (F);
3. compare them.

Theorem
The proelem CKA is ExpSpace-complete.

Proo#f.
1. In the class ExpSpace: see aroOve.
2. ExpSpace-hard: Reduction from the universality proelem for regular
expressions with interleavina.
‘ Mayer < Stockmeyer, “The complexity of word proelems — this time with interleaving”, 1994 O

Paul Brunet 27/42
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QOUTLINE

Paul Brunet

Kappé, Brunet, Silva & Zanasi, "Concurrent Kleene Alcerra: Free Model and
Completeness”, 2011 (suemitted)

ll. Completeness
4 IE )\
=
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P (P) =
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KLEENE ALGEBRA

Equivalence of sequential proarams

A Kleene alaerra is structure (K,0, 1, +, -, x) such that:

1. (K,0,1,+, ) is an idempotent semiring;
2. Vx e K, 1+x-x"=x%
3.Vx,y,ze K, x+y - z<z=y" -x<z

Theorem

KAFe=fo L(e)=L(f).

Paul Brunet
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BI-K LEENE ALGEBRA

A Bi-Kleene alaeBra is structure (K,0,1,+, -, *, ||) such that:
1. (K,0,1,4, ) is an idempotent semiring;
2. (K,0,1,+,|) is 8 commutative idempotent semiring;
3. Vxe K, 1+ x-x* = x%
4. Vx,y,ze K, x+y-z<z=y"-x<z

Theorem
biKA e = f < [e] = [f].

Laurence = Struth, "Completeness theorems for ei-Kleene alaerras and series-parallel rational
pomset languages”, 204+
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CONCURRENT KLEENE ALGEBRA

A concurrent Kleene alaerra is Bi-Kleene alaerra (K,0,1,+, -, %, ||) such that:

(allb)-(clid)<(a-c)l(b-d)

Paul Brunet 3l/4+2



CONCURRENT KLEENE ALGEBRA

A concurrent Kleene alaerra is Bi-Kleene alaerra (K,0,1,+, -, %, ||) such that:

(allb)-(clid)<(a-c)l(b-d)

X

Paul Brunet 3l/4+2



CONCURRENT KLEENE ALGEBRA

A concurrent Kleene alaerra is Bi-Kleene alaerra (K,0,1,+, -, %, ||) such that:

(allb)-(clid)<(a-c)l(b-d)

X

Theorem

CKAF e=f = E[e] = 5[f].

‘Hoare, M@ ller, Struth s Wehrman, "Concurrent Kleene Alaerra”, 2009
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SYNTACTIC CLOSURES ARE NICE...

Definition |

An expression el is a closure of e if CKA I el=e and [el] = “[e].
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BUT DO THEY EXIST?

Let’s try and compute the closure By induction:
- 0l=0
-1=1
= al= g

(e+f)l=-el +fl

- (e-f=el fl

- (eN=el
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BUT DO THEY EXIST?

Let’s try and compute the closure Ry induction:

= =0

= =1

= al= g

- (e+f)l=-el +f]
- (e-l=el i
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... BUT DO THEY EXIST?

Let’s try and compute the closure Ry induction:

= =0

= =1

= al= g

- (e+f)l=-el +f]
- (e-l=el i
- (eN=el”
- (el Fu=772

We strenathen our induction, By assuming that we have closures for
1. every strict susterm of e || f,
2. every term with smaller width than e || f.

We wrrite the corresponding strict ordering <.

Paul Brunet
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WHO'S SMALLER THAN A PARALLEL PRODUCT?

u € [e]

% e [f]
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WHO'S SMALLER THAN A PARALLEL PRODUCT?

u € [e]
v € [f]
<
(Case_ I: x is Parallel.)
y
K= | B e SR
z
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WHO'S SMALLER THAN A PARAI

LEL PRODUCT?

uy
. € [e]
Vy
v e [f]

(Case_ I: x is Parallel.)
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WHO'S SMALLER THAN A PARAI

LEL PRODUCT?

uy
" € [e]
Vy
" e [f]

<
(Case_ I: x is Parallel.)
y Cullw
K= | B e SR
z Cuy ” Vz
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LEL SPLICING AND PRECLOSURE

|

|Par‘alle_l splicing |
A. is 38 finite relation over [E such that:

ullvelel]e I Acr:uellf]Ave]r].
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|Par‘alle_l SP'iQif\C=|
A. is 38 finite relation over [E such that:

ullvelel]e I Acr:uellf]Ave]r].

eaf=ellf+ Y (W)I(r).

/Aerl’

Lenmma

ullveSle|| fleulveleof].

CKAFeof=e|f.
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WHO'S SMALLER THAN A PARALLEL PRODUCT?

C v S

] ] <

Case |: x is parallel.

(Case. 2: xis seaue_r\—tial.)
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SEQUENTIAL SPLICING

| Seauenttial splicing I

V. is 8 finite relation over [E such that:

u-vele]e A Ver:uelllAve]r].

u-veSe|fleu-vele| f+ Z (le ® 1) - (re || re)d]
le Ve re
/foI’f

Proelem: r. || rr is not always smaller than e || ..
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AND THEN, SOME MAGIC HAPPENS...

- We repeat the construction to aet successive equations, involving
closures.

- Only a finite numveer of unkNnown closures appear.
- These equations can Be structured as a linear system.

- With a fancy fixpoint theorem, we compute the least solution of the
system.

- This solution is a closure.
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COMPLETENESs OF CKA

Lenmma
Every series-rational expression admits a closure.

Theorem
CKA & e=f & S[e] = [f].

Implementation: https://doi.org/10.5281/zenodo.926651.
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FURTHER QUESTIONS

- Can we extend the algorithm to a laraer class of Petri nets?
- What agout the parallel star?

- Can | have tests?

- Might | dream of addina names?

- Insert you favourite operator here..
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THATS ALL FOLKS!

Thank you!

See more at:
http://paul.brunet-zamansky.fr
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BRZOZOWSKI GOES CONCURRENT

[ f i1e[e] S B 1E X =y
e*f.f{ 0 otherwise [x=y] '7{ 0 otherwise.
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BRZOZOWSKI GOES CONCURRENT

[ f i1e[e] S B 1E X =y
e*f.f{ 0 otherwise [x=y] '7{ 0 otherwise.

- Seaquential derivatives: § :Ex X — [E
§(0,a)=0 6(l,a)=0 d(b,a) =[a=b] §(e",a)=0(e a) e

d(e-f,a)=0d(e a)-f+exd(f,a) d(e+f,a)=0(e a)+0d(f,a)

d(e||f.a)=exd(f,a)+F«xb(e a).

- Parallel derivatives: v: [E x ( 12E ) —E

v(0,0)=0 v (b, ) =0 Y(1p)=0 y(e p)=0d(e ) e
Y(e-f.o)=v(e. @) - f+exy(f v) Yy(e+f.o)=v(e.@)+v(f.¢)

y(ell f.o)=[p={e fHl+exv(f,0)+fxv(e )
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