CONCURRENT KLEENE ALGEBRA, A DONE DEAL POMSET LANGUAGES AND CONCURRENT KLEENE ALGEBRAS

Séminaire Automates - November 24, 2017

Paul Brunet¹, Damien Pous², Georg Struth³, Tobias Kappé¹, Alexandra Silva¹, Bas Luttik⁴, and Fabio Zanasi¹

University College London¹, ENS de Lyon — CNRS², University of Sheffield³, Eindhoven University of Technology⁺

Equivalence of sequential programs

$$(x \coloneqq 1; y \coloneqq 2); (x \coloneqq y \oplus y \coloneqq x) \qquad \equiv \qquad x \coloneqq 1; (y \coloneqq 2; x \coloneqq y) \oplus (y \coloneqq 2; y \coloneqq x)$$

Equivalence of sequential programs

$$(x := 1; y := 2); (x := y \oplus y := x) \qquad \equiv \qquad x := 1; (y := 2; x := y) \oplus (y := 2; y := x)$$

$$(x1 \cdot y2) \cdot (xy + yx)$$

Paul Brunet 2/4/.

Equivalence of sequential programs

$$(x := 1; y := 2); (x := y \oplus y := x)$$
 $\equiv x := 1; (y := 2; x := y) \oplus (y := 2; y := x)$

$$(x1 \cdot y2) \cdot (xy + yx) = x1 \cdot (y2 \cdot (xy + yx))$$
 (associativity of ·)

Equivalence of sequential programs

$$(x \coloneqq 1; y \coloneqq 2); (x \coloneqq y \oplus y \coloneqq x) \qquad \equiv \qquad x \coloneqq 1; (y \coloneqq 2; x \coloneqq y) \oplus (y \coloneqq 2; y \coloneqq x)$$

$$(x1 \cdot y2) \cdot (xy + yx) = x1 \cdot (y2 \cdot (xy + yx))$$
 (associativity of ·)
= $x1 \cdot ((y2 \cdot xy) + (y2 \cdot yx))$ (distributivity)

Equivalence of sequential programs

A kleene algebra is structure $\langle K, 0, 1, +, \cdot, \star \rangle$ such that:

- 1. $\langle K, 0, 1, +, \cdot \rangle$ is an idempotent semiring;
- 2. $\forall x \in K$, $1 + x \cdot x^* = x^*$;
- 3. $\forall x, y, z \in K, x + y \cdot z \leq z \Rightarrow y^* \cdot x \leq z$.

Theorem

$$KA \vdash e = f \Leftrightarrow \mathcal{L}(e) = \mathcal{L}(f)$$
.

Equivalence of sequential programs

Kleene Algebra

regular languages

finite state automata

Equivalence of sequential programs

Equivalence of sequential programs

CONCURRENT KLEENE ALGEBRAS

Equivalence of parallel programs

$$e,f\in\mathbb{E}:=0\ |\ 1\ |\ a\ |\ e+f\ |\ e\cdot f\ |\ e^\star\ |\ e\parallel f$$

Concurrent Kleene Algebra

down-closed
series-rational languages

automata ?

POMSETS

$$P_1 =$$
 $a \longrightarrow b$

$$P_2 = b$$

POMSETS

$$P_1 =$$
 $A \longrightarrow b$

$$P_2 = b$$

$$P_1 \cdot P_2 = A \xrightarrow{b \to c} b$$

POMSETS

$$P_1 =$$
 $a \longrightarrow b$

$$P_2 = b$$

$$P_1 \cdot P_2 = A \xrightarrow{a \longrightarrow b} b \xrightarrow{c} b$$

 $\mathcal{P}(\mathbb{P})$

I. Brzozowski derivatives

. Brzozowski derivatives

II. Decidability & Complexity

. Brzozowski derivatives

II. Decidability & Complexity

Paul Brunet

Kappé, Brunet, Luttik, Silva 🕏 Zanasi, "Brzozowski Goes Concurrent", 2017

1. Brzozowski derivatives

Paul Brunet 8/4/.

RATIONAL POMSET LANGUAGES

 $e, f \in \mathbb{E} := a \mid 0 \mid 1 \mid e \cdot f \mid e \mid f \mid e + f \mid e^{\star}$

RATIONAL POMSET LANGUAGES

$$e, f \in \mathbb{E} := a \mid 0 \mid 1 \mid e \cdot f \mid e \mid f \mid e + f \mid e^{\star}.$$

$$egin{aligned} \llbracket a
rbracket &:= \left\{
lbecket^a
rbracket \\ \llbracket 0
rbracket &:= \emptyset \\ \llbracket e \cdot f
rbracket &:= \llbracket e
rbracket \cdot \llbracket f
rbracket \\ \llbracket e^\star
rbracket &:= \bigcup_{n \in \mathbf{N}} \llbracket e
rbracket^n \end{aligned}$$

$$[1] := \{ \} \\
 [e + f] := [e] \cup [f] \\
 [e \parallel f] := [e] \parallel [f]$$

RATIONAL POMSET LANGUAGES

$$e, f \in \mathbb{E} := a \mid 0 \mid 1 \mid e \cdot f \mid e \mid f \mid e + f \mid e^{\star}.$$

$$egin{aligned} & \llbracket a
rbracket := \left\{ egin{aligned} a
rbracket \\ & \llbracket 0
rbracket := \emptyset \end{aligned} := egin{aligned} & \llbracket e
rbracket := \left[e
rbracket : \llbracket e
rbracket \end{aligned} \end{aligned}$$

Definition

A set of pomsets S is called a rational pomset language if there is an expression $e \in \mathbb{E}$ such that $S = \llbracket e \rrbracket$.

Sequential transition function

$$\delta(2,e)=8$$

Sequential transition function

Parallel transition function

$$\delta\left(2,e\right)=8$$

$$\gamma(1,\{3,4\})=2$$

Brzozowski goes concurrent (Definitions)

1. Build an infinite pomset automaton:

Brzozowski goes concurrent (Definitions)

- 1. Build an infinite pomset automaton:
 - states are expressions;

Brzozowski goes concurrent (Definitions)

- 1. Build an infinite pomset automaton:
 - states are expressions:
 - ▶ the initial state is the expression we want to translate:

Brzozowski goes concurrent (Definitions)

- 1. Build an infinite pomset automaton:
 - states are expressions:
 - ▶ the initial state is the expression we want to translate:
 - ▶ an expression is accepting if it contains 1;

Brzozowski goes concurrent (Definitions)

- 1. Build an infinite pomset automaton:
 - states are expressions:
 - ▶ the initial state is the expression we want to translate:
 - ▶ an expression is accepting if it contains 1;
 - ▶ the sequential transitions are defined by sequential derivatives;

Brzozowski goes concurrent (Definitions)

- 1. Build an infinite pomset automaton:
 - states are expressions:
 - the initial state is the expression we want to translate:
 - ▶ an expression is accepting if it contains 1;
 - ▶ the sequential transitions are defined by sequential derivatives;
 - ▶ the parallel transitions are defined by parallel derivatives.

Brzozowski goes concurrent (Definitions)

- 1. Build an infinite pomset automaton:
 - states are expressions:
 - ▶ the initial state is the expression we want to translate:
 - ▶ an expression is accepting if it contains 1;
 - the sequential transitions are defined by sequential derivatives;
 - ▶ the parallel transitions are defined by parallel derivatives.

2. Quotient the automaton into a finite one, using the properties of (0, +).

Paul Brunet 2./4

Paul Brunet 12/4:

Fork-Acyclicity: there is a partial order over states ≤ such that:

$$\frac{q \preceq r}{\gamma\left(q, \{\!\!\{ r, s \}\!\!\}\right) = \bot}$$

$$\overline{\delta(q,a) \preceq q}$$

$$\overline{\gamma\left(q,\varphi
ight)} \preceq q$$
.

KLEENE THEOREM

Theorem

A pomset language is series-rational if and only if it is recognisable with fork-acyclic pomset automata.

OUTLINE

I. Brzozowski derivatives

Paul Brunet H-/42

OUTLINE

Brunet, Pous & Struth, "On decidability of concurrent Kleene algebra", 2017

II. Decidability & Complexity

POMSET ORDER

POMSET ORDER

Definition

 $P_1 \sqsubseteq P_2$ if there is a function $\varphi : P_2 \to P_1$ such that:

- $1. \ \varphi$ is a Bijection
- 2. φ preserves labels
- 3. φ preserves ordered pairs

Gischer, "The equational theory of pomsets", 1988

Grabowski, "On partial languages", 1981

TWO DECISION PROBLEMS

Notation

 $\sqsubseteq S := \{P \mid \exists P' \in S : P \sqsubseteq P'\}.$

TWO DECISION PROBLEMS

Notation

 $\sqsubseteq S := \{P \mid \exists P' \in S : P \sqsubseteq P'\}.$

biKA

Given two expressions e, f, are $\llbracket e \rrbracket$ and $\llbracket f \rrbracket$ equal?

CKA

Given two expressions e,f, are ${}^{\sqsubseteq}\llbracket e
rbracket$ and ${}^{\sqsubseteq}\llbracket f
rbracket$ equal?

(+ skip)

(+ skip)

(+ skip)

(* skip)

→ skip

(> skip

(skip

(skip

Paul Brunet

→ skip

Paul Brunet 11/4;

(> skip)

Paul Brunet

RECOGNISABLE POMSET LANGUAGES

Language generated by a net

 $[\![\mathcal{N}]\!]$ is the set of pomset-traces of accepting runs of \mathcal{N} .

Definition

A set of pomsets S is a recognisable pomset language if there is a net $\mathcal N$ such that $S=[\![\mathcal N]\!]$.

Paul Brunet 18/4/.

(>> SKİF

Paul Brunet

→ Skip

(> skip

→ skip

> skip

(skip

Paul Brunet

FROM EXPRESSIONS TO AUTOMATA

SOLVING biKA

Lemma

 $\llbracket e \rrbracket = \llbracket \mathcal{N}(e) \rrbracket$.

Corollary

Rational pomset languages are recognisable.

SOLVING biKA

Lemma

 $\llbracket e \rrbracket = \llbracket \mathcal{N}(e) \rrbracket$.

Corollary

Rational pomset languages are recognisable.

Theorem

Testing containment of pomset-trace languages of two Petri nets is an ExpSpace-complete problem.

Jategaonkar & Meyer, "Deciding true concurrency equivalences on safe, finite nets", 1996

Corollary

The problem biKA lies in the class ExpSpace.

$$\sqsubseteq \llbracket e \rrbracket = \sqsubseteq \llbracket f \rrbracket$$

$$\Box \llbracket e \rrbracket = \Box \llbracket f \rrbracket \Leftrightarrow \Box \llbracket e \rrbracket \subseteq \Box \llbracket f \rrbracket \qquad \land \qquad \Box \llbracket e \rrbracket \supseteq \Box \llbracket f \rrbracket \\
\Leftrightarrow \qquad \llbracket e \rrbracket \subseteq \Box \llbracket f \rrbracket \qquad \land \qquad \Box \llbracket e \rrbracket \supseteq \Box \llbracket f \rrbracket \\
\Leftrightarrow \qquad \llbracket \mathcal{N}(e) \rrbracket \subseteq \Box \llbracket \mathcal{N}(f) \rrbracket \land \Box \llbracket \mathcal{N}(e) \rrbracket \supseteq \Box \llbracket \mathcal{N}(f) \rrbracket$$

Problem

Let $\mathcal{N}_1,\mathcal{N}_2$ be well behaved nets. Is it true that for every run R_1 of \mathcal{N}_1 there is a run R_2 in \mathcal{N}_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)$?

Paul Brunet 22/4/.

Problem

Let N_1, N_2 be well behaved nets. Is it true that for every run R_1 of N_1 there is a run R_2 in N_2 such that

 $\overline{\mathcal{P}om}(R_1) \sqsubseteq \overline{\mathcal{P}om}(R_2)$?

Problem

Let N_1, N_2 be well behaved nets. Is it true that for every run R_1 of N_1 there is a run R_2 in N_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)$?

- Build an automaton \mathscr{A}_1 for $[\![\mathcal{N}_1]\!]$

Problem

Let $\mathcal{N}_1,\mathcal{N}_2$ be well behaved nets. Is it true that for every run R_1 of \mathcal{N}_1 there is a run R_2 in \mathcal{N}_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)$?

- Build an automaton \mathscr{A}_1 for $[\![\mathcal{N}_1]\!]$
- Build an automaton \mathscr{A}_2 for $\llbracket \mathcal{N}_1 \rrbracket \cap {}^{\sqsubseteq} \llbracket \mathcal{N}_2 \rrbracket$

Problem

Let $\mathcal{N}_1,\mathcal{N}_2$ be well behaved nets. Is it true that for every run R_1 of \mathcal{N}_1 there is a run R_2 in \mathcal{N}_2 such that

$$\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)$$
?

- Build an automaton \mathscr{A}_1 for $[\![\mathcal{N}_1]\!]$
- Build an automaton \mathscr{A}_2 for $[\![\mathcal{N}_1]\!]\cap {}^{\sqsubseteq}[\![\mathcal{N}_2]\!]$
- $\llbracket \mathcal{N}_1
 rbracket \subseteq \llbracket \mathcal{N}_2
 rbracket$ if and only if $\mathcal{L}\left(\mathscr{A}_1
 ight) = \mathcal{L}\left(\mathscr{A}_2
 ight)$.

TRANSITION AUTOMATON

TRANSITION AUTOMATON

Paul Brunet 24/4/

MASSAGING RUNS

Paul Brunet 25/4/.

REDUCTION TO AUTOMATA

Let \mathcal{N}_1 and \mathcal{N}_2 be some polite nets, of size n, m.

Lemma

There is an automaton $\mathscr{A}(\mathcal{N}_1)$ with $\mathcal{O}(2^n)$ states that recognises the set of accepting runs in \mathcal{N}_1 .

REDUCTION TO AUTOMATA

Let \mathcal{N}_1 and \mathcal{N}_2 be some polite nets, of size n, m.

Lemma

There is an automaton $\mathscr{A}(\mathcal{N}_1)$ with $\mathcal{O}(2^n)$ states that recognises the set of accepting runs in \mathcal{N}_1 .

Lemma

There is an automaton $\mathcal{N}_1 \prec \mathcal{N}_2$ with $\mathcal{O}(2^{n+m+nm})$ states that recognises the set of accepting runs in \mathcal{N}_1 whose poinset belongs to $\mathbb{I}[N_2]$.

DECIDABILITY + COMPLEXITY

Theorem

Given two expressions $e,f\in\mathbb{E},$ we can test if $\llbracket e
rbracket \subseteq \llbracket f
rbracket$ in ExpSpace.

Proof.

- 1. Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
- 2. Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
- 3. compare them.

DECIDABILITY + COMPLEXITY

Theorem

Given two expressions $e, f \in \mathbb{E}$, we can test if $\llbracket e \rrbracket \subseteq \llbracket f \rrbracket$ in ExpSpace.

Proof.

- 1. Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
- 2. Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
- 3. compare them.

Theorem

The problem CKA is ExpSpace-complete.

Proof.

- 1. In the class ExpSpace: see above.
- 2. ExpSpace-hard: Reduction from the universality problem for regular expressions with interleaving.

Mayer & Stockmeyer, "The complexity of word problems - this time with interleaving", 1994

П

OUTLINE

II. DecidaBility ≠ Complexity

OUTLINE

Kappé, Brunet, Silva & Zanasi, "Concurrent Kleene Algebra: Free Model and Completeness", 2017 (submitted)

III. Completeness

Paul Brunet

KLEENE ALGEBRA

Equivalence of sequential programs

A kleene algebra is structure $\langle K, 0, 1, +, \cdot, \star \rangle$ such that:

- 1. $\langle K, 0, 1, +, \cdot \rangle$ is an idempotent semiring;
- 2. $\forall x \in K$, $1 + x \cdot x^* = x^*$;
- 3. $\forall x, y, z \in K, x + y \cdot z \leq z \Rightarrow y^* \cdot x \leq z$.

Theorem

$$KA \vdash e = f \Leftrightarrow \mathcal{L}(e) = \mathcal{L}(f)$$
.

BI-KLEENE ALGEBRA

A bi-Kleene algebra is structure $\langle K, 0, 1, +, \cdot, \star, \parallel \rangle$ such that:

- 1. $\langle K, 0, 1, +, \cdot \rangle$ is an idempotent semiring;
- 2. $\langle K, 0, 1, +, \parallel \rangle$ is a commutative idempotent semirina;
- 3. $\forall x \in K, 1 + x \cdot x^* = x^*;$
- 4. $\forall x, y, z \in K, x + y \cdot z \leq z \Rightarrow y^* \cdot x \leq z$.

Theorem

$$biKA \vdash e = f \Leftrightarrow \llbracket e \rrbracket = \llbracket f \rrbracket.$$

Laurence \$ Struth, "Completeness theorems for Bi-Kleene algebras and series-parallel rational pomset languages", 2014

CONCURRENT KLEENE ALGEBRA

A concurrent Kleene algebra is bi-Kleene algebra $\langle K, 0, 1, +, \cdot, \star, \parallel \rangle$ such that:

$$(a \parallel b) \cdot (c \parallel d) \leq (a \cdot c) \parallel (b \cdot d)$$

CONCURRENT KLEENE ALGEBRA

A concurrent Kleene algebra is bi-kleene algebra $\langle K, 0, 1, +, \cdot, \star, \parallel \rangle$ such that:

$$(a \parallel b) \cdot (c \parallel d) \leq (a \cdot c) \parallel (b \cdot d)$$

CONCURRENT KLEENE ALGEBRA

A concurrent Kleene algebra is bi-Kleene algebra $\langle K, 0, 1, +, \cdot, \star, \parallel \rangle$ such that:

$$(a \parallel b) \cdot (c \parallel d) \leq (a \cdot c) \parallel (b \cdot d)$$

Theorem

$$CKA \vdash e = f \Rightarrow {}^{\sqsubseteq} \llbracket e \rrbracket = {}^{\sqsubseteq} \llbracket f \rrbracket.$$

Hoare, Möller, Struth & Wehrman, "Concurrent Kleene Algebra", 2009

Definition

An expression $e\downarrow$ is a <u>closure</u> of e if $\operatorname{CKA} \vdash e\downarrow = e$ and $\llbracket e\downarrow \rrbracket = {}^{\sqsubseteq} \llbracket e \rrbracket$.

Lemma

If every series-rational expression admits a closure, the axioms of ${
m CKA}$ are complete with respect to down-closed pomset languages.

Laurence \$ Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft)

Lemma

If every series-rational expression admits a closure, the axioms of ${
m CKA}$ are complete with respect to down-closed pomset languages.

Laurence \$ Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft)

Proof. Assume ${}^{\sqsubseteq}\llbracket e \rrbracket = {}^{\sqsubseteq}\llbracket f \rrbracket$.

Definition

An expression $e\downarrow$ is a closure of e if $\widehat{CKA} \vdash e\downarrow = e$ and $e\downarrow = e$.

Lemma

If every series-rational expression admits a closure, the axioms of ${
m CKA}$ are complete with respect to down-closed pomset languages.

Laurence \Rightarrow Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft)

Lemma

If every series-rational expression admits a closure, the axioms of ${
m CKA}$ are complete with respect to down-closed pomset languages.

Laurence \Rightarrow Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft)

 $\overline{\text{By (2)}}$, it means that $[e\downarrow] = [f\downarrow]$.

By compleness of biKA, it follows that biKA $\vdash e \downarrow = f \downarrow$, thus CKA $\vdash e \downarrow = f \downarrow$.

Lemma

If every series-rational expression admits a closure, the axioms of ${
m CKA}$ are complete with respect to down-closed pomset languages.

Laurence \Rightarrow Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft)

By (2), it means that $[e\downarrow] = [f\downarrow]$.

By compleness of biKA, it follows that biKA $\vdash e \downarrow = f \downarrow$, thus CKA $\vdash e \downarrow = f \downarrow$. By (1) we get that CKA $\vdash e = e \downarrow = f \downarrow = f$.

Definition

An expression $e\downarrow$ is a closure of e if $\widehat{CKA} \vdash e\downarrow = e$ and $e\downarrow = e$.

Lemma

If every series-rational expression admits a closure, the axioms of ${
m CKA}$ are complete with respect to down-closed pomset languages.

Laurence \Rightarrow Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft)

 $\overline{\mathsf{By}(2)}$, it means that $[e\downarrow] = [f\downarrow]$.

By compleness of biKA, it follows that biKA $\vdash e \downarrow = f \downarrow$, thus CKA $\vdash e \downarrow = f \downarrow$. By (1) we get that CKA $\vdash e = e \downarrow = f \downarrow = f$.

Paul Brunet

Let's try and compute the closure by induction:

- $-0\downarrow=0$
- $-1 \downarrow = 1$
- $-a\downarrow=a$

- $-0\downarrow=0$
- $-1 \downarrow = 1$
- a↓= a
- $(e+f) \downarrow = e \downarrow + f \downarrow$

- $-0\downarrow=0$
- $-1 \downarrow = 1$
- a↓= a
- $-(e+f)\downarrow = e\downarrow +f\downarrow$
- $-(e\cdot f)\downarrow = e\downarrow \cdot f\downarrow$

- $-0\downarrow=0$
- **-** 1↓= 1
- a↓= a
- $(e+f) \downarrow = e \downarrow +f \downarrow$
- $-(e \cdot f) \downarrow = e \downarrow \cdot f \downarrow$
- $(e^{\star})\!\!\downarrow = e\!\!\downarrow^{\star}$

- $-0\downarrow=0$
- **-** 1↓= 1
- $a\downarrow = a$
- $(e+f) \downarrow = e \downarrow +f \downarrow$
- $(e \cdot f) \downarrow = e \downarrow \cdot f \downarrow$
- $(e^*) \downarrow = e \downarrow^*$
- $(e \parallel f) \downarrow = ???$

Let's try and compute the closure by induction:

- $-0\downarrow=0$
- $-1 \downarrow = 1$
- $a\downarrow = a$
- $-(e+f)\downarrow = e\downarrow +f\downarrow$
- $-(e \cdot f) \downarrow = e \downarrow \cdot f \downarrow$
- $-(e^*)\downarrow=e\downarrow^*$
- $(e \parallel f) \downarrow = ???$

We strengthen our induction, by assuming that we have closures for

- 1. every strict subterm of $e \parallel f$,
- 2. every term with smaller width than $e \parallel f$.

We write the corresponding strict ordering \prec .

(Case I: x is parallel.)

(Case I: x is parallel.)

PARALLEL SPLICING AND PRECLOSURE

Parallel splicing

 Δ_e is a finite relation over $\mathbb E$ such that:

 $u \parallel v \in \llbracket e \rrbracket \Leftrightarrow \exists I \Delta_e \ r : u \in \llbracket I \rrbracket \land v \in \llbracket r \rrbracket.$

PARALLEL SPLICING AND PRECLOSURE

Parallel splicing

 Δ_e is a finite relation over $\mathbb E$ such that:

$$u \parallel v \in \llbracket e \rrbracket \Leftrightarrow \exists I \ \Delta_e \ r : u \in \llbracket I \rrbracket \land v \in \llbracket r \rrbracket.$$

$$e \odot f = e \parallel f + \sum_{|\Delta_{e\parallel f}r} (l\downarrow) \parallel (r\downarrow).$$

Paul Brunet

PARALLEL SPLICING AND PRECLOSURE

Parallel splicing

 Δ_e is a finite relation over $\mathbb E$ such that:

$$u \parallel v \in \llbracket e \rrbracket \Leftrightarrow \exists I \Delta_e \ r : u \in \llbracket I \rrbracket \land v \in \llbracket r \rrbracket.$$

$$e \odot f = e \parallel f + \sum_{|\Delta_{e\parallel f}r} (l\downarrow) \parallel (r\downarrow).$$

Lemma

$$u \parallel v \in \llbracket e \parallel f \rrbracket \Leftrightarrow u \parallel v \in \llbracket e \odot f \rrbracket.$$

$$CKA \vdash e \odot f = e \parallel f$$
.

WHO'S SMALLER THAN A PARALLEL PRODUCT?

WHO'S SMALLER THAN A PARALLEL PRODUCT?

SEQUENTIAL SPLICING

Sequential splicing

 $abla_e$ is a finite relation over $\mathbb E$ such that:

$$u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists I \nabla_e r : u \in \llbracket I \rrbracket \land v \in \llbracket r \rrbracket.$$

SEQUENTIAL SPLICING

Sequential splicing

 ∇_e is a finite relation over $\mathbb E$ such that:

$$u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists I \nabla_e r : u \in \llbracket I \rrbracket \land v \in \llbracket r \rrbracket.$$

$$u \cdot v \in \mathbb{I}[e \parallel f] \Leftrightarrow u \cdot v \in [e \parallel f + \sum_{\substack{l_e \nabla_e r_e \\ l_f \nabla_f r_f}} (l_e \odot l_f) \cdot (r_e \parallel r_f) \downarrow]$$

SEQUENTIAL SPLICING

Sequential splicing

 $abla_e$ is a finite relation over $\mathbb E$ such that:

$$u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists I \; \nabla_e \; r : u \in \llbracket I \rrbracket \land v \in \llbracket r \rrbracket.$$

$$u \cdot v \in \mathbb{I}[e \parallel f] \Leftrightarrow u \cdot v \in [e \parallel f + \sum_{\substack{l_e \nabla_e r_e \\ l_f \nabla_f r_f}} (l_e \odot l_f) \cdot (r_e \parallel r_f) \downarrow]$$

Problem: $r_e \parallel r_f$ is not always smaller than $e \parallel f_{\dots}$

- We repeat the construction to get successive equations, involving closures.

- We repeat the construction to get successive equations, involving closures.

- Only a finite number of unknown closures appear.

- We repeat the construction to get successive equations, involving closures.
- Only a finite number of unknown closures appear.
- These equations can be structured as a linear system.

- We repeat the construction to get successive equations, involving closures.
- Only a finite number of unknown closures appear.
- These equations can be structured as a linear system.
- With a fancy fixpoint theorem, we compute the least solution of the system.

- We repeat the construction to get successive equations, involving closures.
- Only a finite number of unknown closures appear.
- These equations can be structured as a linear system.
- With a fancy fixpoint theorem, we compute the least solution of the system.
- This solution is a closure.

COMPLETENESS OF CKA

Lemma

Every series-rational expression admits a closure.

Theorem

$$CKA \vdash e = f \Leftrightarrow \sqsubseteq \llbracket e \rrbracket = \sqsubseteq \llbracket f \rrbracket.$$

Implementation: https://doi.org/10.5281/zenodo.926651.

1. Brzozowski derivatives

II. DecidaBility & Complexity

III. Completeness

- Can we extend the algorithm to a larger class of Petri nets?

- Can we extend the algorithm to a larger class of Petri nets?
- What about the parallel star?

- Can we extend the algorithm to a larger class of Petri nets?
- What about the parallel star?
- Can I have tests?

- Can we extend the algorithm to a larger class of Petri nets?
- What about the parallel star?
- Can I have tests?
- Might I dream of adding names?

- Can we extend the algorithm to a larger class of Petri nets?
- What about the parallel star?
- Can I have tests?
- Might I dream of adding names?
- Insert you favourite operator here...

THAT'S ALL FOLKS!

Thank you!

See more at: http://paul.brunet-zamansky.fr

Paul Brunet 42/4/.

- 1. Introduction
- II. Pomset languages and Brzozowski derivatives
- III. Decidability & Complexity
- IV. Completeness
- V. Summary and Outlook

BRZOZOWSKI GOES CONCURRENT (BACK)

$$e\star f:=\left\{ egin{array}{ll} f & \mbox{if } 1\in \llbracket e
rbracket \\ 0 & \mbox{otherwise.} \end{array}
ight.$$

$$[x = y] := \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise.} \end{cases}$$

BRZOZOWSKI GOES CONCURRENT (BACK)

$$e\star f:=\left\{egin{array}{ll} f & ext{if } 1\in \llbracket e
rbracket \\ 0 & ext{otherwise.} \end{array}
ight.$$

$$[x = y] := \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise.} \end{cases}$$

- Sequential derivatives: $\delta: \mathbb{E} imes \Sigma o \mathbb{E}$

$$\delta(0, a) = 0 \qquad \delta(1, a) = 0 \qquad \delta(b, a) = [a = b] \qquad \delta(e^*, a) = \delta(e, a) \cdot e^*$$

$$\delta(e \cdot f, a) = \delta(e, a) \cdot f + e \star \delta(f, a) \qquad \delta(e + f, a) = \delta(e, a) + \delta(f, a)$$

$$\delta(e \parallel f, a) = e \star \delta(f, a) + f \star \delta(e, a).$$

BRZOZOWSKI GOES CONCURRENT (BACK)

$$e\star f \coloneqq \left\{ egin{array}{ll} f & ext{if } 1 \in \llbracket e
rbracket \\ 0 & ext{otherwise.} \end{array}
ight.$$

$$[x = y] := \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise.} \end{cases}$$

- Sequential derivatives: $\delta: \mathbb{E} \times \Sigma \to \mathbb{E}$

$$\delta(0, a) = 0 \qquad \delta(1, a) = 0 \qquad \delta(b, a) = [a = b] \qquad \delta(e^*, a) = \delta(e, a) \cdot e^*$$

$$\delta(e \cdot f, a) = \delta(e, a) \cdot f + e \star \delta(f, a) \qquad \delta(e + f, a) = \delta(e, a) + \delta(f, a)$$

$$\delta(e \parallel f, a) = e \star \delta(f, a) + f \star \delta(e, a).$$

- Parallel derivatives: $\gamma: \mathbb{E} imes \left(egin{array}{c} \mathbb{E} \\ 2 \end{array}
ight)
ightarrow \mathbb{E}$

$$\gamma(0,\varphi) = 0 \qquad \gamma(b,\varphi) = 0 \qquad \gamma(1,\varphi) = 0 \qquad \gamma(e^*,\varphi) = \delta(e,\varphi) \cdot e^*$$

$$\gamma(e \cdot f,\varphi) = \gamma(e,\varphi) \cdot f + e \star \gamma(f,\varphi) \qquad \gamma(e + f,\varphi) = \gamma(e,\varphi) + \gamma(f,\varphi)$$

$$\gamma(e \parallel f,\varphi) = [\varphi = \{e,f\}] + e \star \gamma(f,\varphi) + f \star \gamma(e,\varphi)$$