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Introduction

Words and languages
Definitions

I alphabet: arbitrary set whose elements are called letters.
I word: finite sequence of letters.
I language: arbitrary set of words of a given alphabet.

Notations

I The empty word is written ε.
I The unit language is 1 = {ε}.
I The concatenation of words/languages is denoted by x · y .
I The mirror image of words/languages is denoted by x`.
I The Kleene star of a language is denoted by x?.
I The positive iteration of a language is denoted by x+.
I The union and the intersection are written ∪ and ∩, and the

empty language is 0.
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ab · c = abc {ab, a} · {c} = {abc , ac}
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Introduction

Universal laws

∀Σ, ∀a, b, c ⊆ Σ?

a ∪ b = b ∪ a (commutativity of union)

a · (b · c) = (a · b) · c (associativity of concatenation)

e, f ∈ EX ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f | e` | e?.

Language equivalence
Lang |= e ' f iff ∀Σ, ∀σ : X → P (Σ?) , σ̂ (e) = σ̂ (f ).
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Introduction

Free representation

r : EX → R

r(e) = r(f )

Lang |= e ' fAx ` e = f

Decidability
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Free Representation

Example

Lang |= (1 ∩ a) · b ' b · (1 ∩ a)

Proof. Let σ : {a, b} → P (X ?).

I If ε ∈ σ (a): then σ̂ (1 ∩ a) = {ε}, thus:

σ̂ ((1 ∩ a) · b) = {ε} · σ (b) = σ (b) .

σ̂ (b · (1 ∩ a)) = σ (b) · {ε} = σ (b) .

I If ε /∈ σ (a): then σ̂ (1 ∩ a) = ∅, thus:

σ̂ ((1 ∩ a) · b) = ∅ · σ (b) = ∅.
σ̂ (b · (1 ∩ a)) = σ (b) · ∅ = ∅.

�

Idea
Compare 1-free terms under the assumption that certain variables contain ε.

Paul Brunet Language Algebra 8/25
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Free Representation

Comparing series parallel terms

G(a) :=
a G(u · v) := G(u) G(v)

G(u ∩ v) :=

G(u)

G(v)

Example

a

c

d

b

a

c

b

b

G (((a ∩ c) · b) ∩ d) =

G ((a · b) ∩ (c · b)) =

Paul Brunet Language Algebra 9/25



Free Representation

Preorder

Preorder on graphs
G C H if there exists a graph morphism from H to G .

G :

H :

a

c

d

b

a

c

b

b

((a ∩ c) · b) ∩ d

(a · b) ∩ (c · b)

Paul Brunet Language Algebra 10/25



Free Representation

Characterization theorem

u, v ∈ SPΣ ::= a | u · v | u ∩ v

Theorem

Rel |= u ⊆ v ⇔ G(u)C G(v)

Freyd & Scedrov, Categories, Allegories, 1990

Andréka & Bredikhin, The equational theory of union-free algebras of relations, 1995

Theorem

∀u, v ∈ SPΣ, Rel |= u ⊆ v ⇔ Lang |= u ⊆ v .

Andréka, Mikulás & Németi, The equational theory of Kleene lattices, 2011

Paul Brunet Language Algebra 11/25



Free Representation

Preorder on weak graphs

Definition
A weak graph is a pair of a graph and a set of tests.

Weak graph preorder
〈G ,A〉 J 〈H,B〉 if B ⊆ A and there is an A-weak morphism from H to G .

A = {a}
a b

a c

a c

b

H :

G :

Paul Brunet Language Algebra 12/25



Free Representation

Characterisation Theorem

u, v ∈ TX ::= 1 | a | u · v | u ∩ v

For every term u ∈ TX we can build a weak graph G (u).

Corollary

Lang |= u ⊆ v ⇔ G (u) J G (v) .
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Free Representation

Simplifying expressions

e, f ∈ EX ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f | e` | e?.

T : EX → P (TX∪X ′)

Lang |= e ⊆ f ⇔ ∀u ∈ T (e) ,∃v ∈ T (f ) : Lang |= u ⊆ v
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Free Representation

Free representation of expressions

EX

P (TX∪X ′ )

T

P (WeakGraphX∪X ′ )

P (G)

P (WeakGraphX∪X ′ )

J_

R

Theorem

Lang |= e ' f ⇔ R (e) = R (f )

Paul Brunet Language Algebra 15/25



Free Representation

Free representation of expressions

EX

P (TX∪X ′ )

T

P (WeakGraphX∪X ′ )

P (G)

P (WeakGraphX∪X ′ )

J_

R

Theorem

Lang |= e ' f ⇔ R (e) = R (f )

Paul Brunet Language Algebra 15/25



Free Representation

Free representation of expressions

EX

P (TX∪X ′ )

T

P (WeakGraphX∪X ′ )

P (G)

P (WeakGraphX∪X ′ )

J_

R

Theorem

Lang |= e ' f ⇔ R (e) = R (f )

Paul Brunet Language Algebra 15/25



Free Representation

Free representation of expressions

EX

P (TX∪X ′ )

T

P (WeakGraphX∪X ′ )

P (G)

P (WeakGraphX∪X ′ )

J_

R

Theorem

Lang |= e ' f ⇔ R (e) = R (f )

Paul Brunet Language Algebra 15/25



Free Representation

Free representation of expressions

EX

P (TX∪X ′ )

T

P (WeakGraphX∪X ′ )

P (G)

P (WeakGraphX∪X ′ )

J_

R

Theorem

Lang |= e ' f ⇔ R (e) = R (f )

Paul Brunet Language Algebra 15/25



Free Representation

Free representation of expressions

EX

P (TX∪X ′ )

T

P (WeakGraphX∪X ′ )

P (G)

P (WeakGraphX∪X ′ )

J_

R

Theorem

Lang |= e ' f ⇔ R (e) = R (f )

Paul Brunet Language Algebra 15/25



Main results

Outline

I. Introduction

II. Free Representation

III. Main results

IV. Outlook

Paul Brunet Language Algebra 16/25



Main results

Axiomatisation
For series parallel terms
Assume a set of tests A,

A `sp u ≤ u

A `sp u ≤ v A `sp v ≤ w

A `sp u ≤ w

A `sp u ≤ v A `sp u′ ≤ v ′

A `sp u · u′ ≤ v · v ′
A `sp u ≤ v A `sp u′ ≤ v ′

A `sp u ∩ u′ ≤ v ∩ v ′

A `sp u · (v · w) = (u · v) · w A `sp u ∩ (v ∩ w) = (u ∩ v) ∩ w

A `sp u ≤ u ∩ u A `sp u ∩ v ≤ v ∩ u A `sp u ∩ v ≤ u

var (u) ⊆ A

A `sp v ≤ u · v
var (u) ⊆ A

A `sp v ≤ v · u

Paul Brunet Language Algebra 17/25



Main results

Axiomatisation
without ?

If e doesn’t use the Kleene star, then T (e) is finite. In this case we obtain a
complete finite axiomatisation:

I 〈0, 1, ·,∪〉 is an idempotent semiring;
I 〈∪,∩〉 is a distributive lattice;
I mirror image laws:

0` = 0 1` = 1 e`
`

= e

e · f ` = f ` · e` e ∩ f ` = e` ∩ f ` e ∪ f ` = e` ∪ f `

I subunit laws:

1 ∩ (e · f ) = 1 ∩ (e ∩ f )

1 ∩
(
e`
)

= 1 ∩ e
(1 ∩ e) · f = f · (1 ∩ e)

((1 ∩ e) · f ) ∩ g = (1 ∩ e) · (f ∩ g)
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Main results

Axiomatisation
without ?

If e doesn’t use the Kleene star, then T (e) is finite. In this case we obtain a
complete finite axiomatisation:
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Main results

Decidability of Kleene algebra
Finite state automata

e, f ::= 0 | 1 | a | e ∪ f | e · f | e?.

a

b

b
a

a

b a

b
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Main results

Decidability of identity-free Kleene lattices
Petri automata

e, f ::= 0 | a | e ∪ f | e ∩ f | e · f | e+.

a

b

c

d
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Main results

Decidability of Language algebra
Weighted Petri automata

e, f ::= 0 | 1 | a | e ∪ f | e ∩ f | e · f | e` | e?.

{a}

∅

{e}

∅

a

b

c

d
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Outlook

Open problems

I. Can we axiomatise with e??
No finite axiomatisation, but maybe finitely presentable?

II. What about >?

(i) Won’t work (with this approach) for a theory with unions:

If ab = cd then there is a word w such that:

a b
a w d

c d
or

a b
c w b
c d

Lang |= (a · b) ∩ (c · d) ⊆ (a · > · d) ∪ (c · > · b)

(ii) What about the union-free fragment?
Just add e ⊆ > and > ⊆ >`, there is an equivalent graph construction.
However, completeness is tricky...
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Outlook

That’s all folks!

Thank you!

Freyd & Scedrov, Categories, Allegories, 1990

Andréka & Bredikhin, The equational theory of union-free algebras of relations, 1995

Andréka, Mikulás & Németi, The equational theory of Kleene lattices, 2011

Bloom, Ésik & Stefanescu, Notes on equational theories of relations, 1995

B. & Pous, Petri Automata for Kleene Allegories, 2015

B., Reversible Kleene lattices, 2017

See more at:
http://paul.brunet-zamansky.fr
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