The Equational Theory of Algebras of Languages

BLAST in Nashville

August 14-18, 2017

Paul Brunet
University College London

ADCI.

Outline

I. Introduction
II. Free Representation
III. Main results
IV. Outlook

Outline

I. Introduction

II. Free Representation

III. Main results
IV. Outlook

Words and languages

Definitions

Notations

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.

Notations

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.
- word: finite sequence of letters.

Notations

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.
- word: finite sequence of letters.
- language: arbitrary set of words of a given alphabet.

Notations

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.
- word: finite sequence of letters.
- language: arbitrary set of words of a given alphabet.

Notations

- The empty word is written ε.

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.
- word: finite sequence of letters.
- language: arbitrary set of words of a given alphabet.

Notations

- The empty word is written ε.
- The unit language is $1=\{\varepsilon\}$.

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.
- word: finite sequence of letters.
- language: arbitrary set of words of a given alphabet.

Notations

- The empty word is written ε.
- The unit language is $1=\{\varepsilon\}$.
- The concatenation of words/languages is denoted by $x \cdot y$.

$$
a b \cdot c=a b c
$$

$$
\{a b, a\} \cdot\{c\}=\{a b c, a c\}
$$

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.
- word: finite sequence of letters.
- language: arbitrary set of words of a given alphabet.

Notations

- The empty word is written ε.
- The unit language is $1=\{\varepsilon\}$.
- The concatenation of words/languages is denoted by $x \cdot y$.
- The mirror image of words/languages is denoted by x^{\smile}.

$$
a b c^{\smile}=c b a \quad\{a b, a\}^{\smile}=\{b a, a\}
$$

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.
- word: finite sequence of letters.
- language: arbitrary set of words of a given alphabet.

Notations

- The empty word is written ε.
- The unit language is $1=\{\varepsilon\}$.
- The concatenation of words/languages is denoted by $x \cdot y$.
- The mirror image of words/languages is denoted by x^{\wedge}.
- The Kleene star of a language is denoted by x^{\star}.
$\{a, b\}^{\star}$ is the set of words over the alphabet $\{a, b\}$.
$\{a a\}^{\star}$ is the set of sequences of as of even length.

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.
- word: finite sequence of letters.
- language: arbitrary set of words of a given alphabet.

Notations

- The empty word is written ε.
- The unit language is $1=\{\varepsilon\}$.
- The concatenation of words/languages is denoted by $x \cdot y$.
- The mirror image of words/languages is denoted by x^{\wedge}.
- The Kleene star of a language is denoted by x^{\star}.
- The positive iteration of a language is denoted by x^{+}.
$\{a, b\}^{+}$is the set of non-empty words over the alphabet $\{a, b\}$.
$\{a a\}^{+}$is the set of non-empty sequences of as of even length.

Words and languages

Definitions

- alphabet: arbitrary set whose elements are called letters.
- word: finite sequence of letters.
- language: arbitrary set of words of a given alphabet.

Notations

- The empty word is written ε.
- The unit language is $1=\{\varepsilon\}$.
- The concatenation of words/languages is denoted by $x \cdot y$.
- The mirror image of words/languages is denoted by x^{\smile}.
- The Kleene star of a language is denoted by x^{\star}.
- The positive iteration of a language is denoted by x^{+}.
- The union and the intersection are written \cup and \cap, and the empty language is 0 .

Universal laws

$$
\begin{aligned}
a \cup b & =b \cup a \\
a \cdot(b \cdot c) & =(a \cdot b) \cdot c
\end{aligned}
$$

(commutativity of union)
(associativity of concatenation)

Universal laws

$\forall \Sigma, \forall a, b, c \subseteq \Sigma^{\star}$

$$
\begin{aligned}
a \cup b & =b \cup a \\
a \cdot(b \cdot c) & =(a \cdot b) \cdot c
\end{aligned}
$$

(commutativity of union)
(associativity of concatenation)

Universal laws

$\forall \Sigma, \forall a, b, c \subseteq \Sigma^{\star}$

$$
\begin{aligned}
a \cup b & =b \cup a \\
a \cdot(b \cdot c) & =(a \cdot b) \cdot c
\end{aligned}
$$

(commutativity of union)
(associativity of concatenation)

$$
e, f \in \mathbb{E}_{X}::=0|1| a|e \cup f| e \cap f|e \cdot f| e^{\smile} \mid e^{\star} .
$$

Universal laws

$\forall \Sigma, \forall a, b, c \subseteq \Sigma^{\star}$

$$
\begin{aligned}
a \cup b & =b \cup a \\
a \cdot(b \cdot c) & =(a \cdot b) \cdot c
\end{aligned}
$$

(commutativity of union)
(associativity of concatenation)

$$
e, f \in \mathbb{E}_{X}::=0|1| a|e \cup f| e \cap f|e \cdot f| e^{\smile} \mid e^{\star} .
$$

Language equivalence

$$
\text { Lang } \models e \simeq f \text { iff } \forall \Sigma, \forall \sigma: X \rightarrow \mathcal{P}\left(\Sigma^{\star}\right), \widehat{\sigma}(e)=\widehat{\sigma}(f)
$$

Free representation

$$
r: \mathbb{E}_{X} \rightarrow R
$$

$$
r(e)=r(f)
$$

Free representation

$$
r: \mathbb{E}_{X} \rightarrow R
$$

$$
r(e)=r(f) \Longleftrightarrow \text { Lang } \models e \simeq f
$$

Free representation

$$
r: \mathbb{E}_{X} \rightarrow R
$$

$$
A x \vdash e=f \Longleftrightarrow r(e)=r(f) \Longleftrightarrow \text { Lang } \models e \simeq f
$$

Free representation

$$
r: \mathbb{E}_{X} \rightarrow R
$$

Outline

I. Introduction

II. Free Representation
III. Main results

Outlook

Example

$$
\text { Lang } \models(1 \cap a) \cdot b \simeq b \cdot(1 \cap a)
$$

Example

$$
\text { Lang } \models(1 \cap a) \cdot b \simeq b \cdot(1 \cap a)
$$

Proof. Let $\sigma:\{a, b\} \rightarrow \mathcal{P}\left(X^{\star}\right)$.

Example

$$
\text { Lang } \models(1 \cap a) \cdot b \simeq b \cdot(1 \cap a)
$$

Proof. Let $\sigma:\{a, b\} \rightarrow \mathcal{P}\left(X^{\star}\right)$.

- If $\varepsilon \in \sigma(a)$:

$$
\begin{aligned}
& \hat{\sigma}((1 \cap a) \cdot b)= \\
& \widehat{\sigma}(b \cdot(1 \cap a))=
\end{aligned}
$$

- If $\varepsilon \notin \sigma(a)$:

$$
\begin{aligned}
& \widehat{\sigma}((1 \cap a) \cdot b)= \\
& \widehat{\sigma}(b \cdot(1 \cap a))=
\end{aligned}
$$

Example

$$
\text { Lang } \models(1 \cap a) \cdot b \simeq b \cdot(1 \cap a)
$$

Proof. Let $\sigma:\{a, b\} \rightarrow \mathcal{P}\left(X^{\star}\right)$.

- If $\varepsilon \in \sigma(a)$: then $\widehat{\sigma}(1 \cap a)=\{\varepsilon\}$, thus:

$$
\begin{aligned}
& \hat{\sigma}((1 \cap a) \cdot b)= \\
& \widehat{\sigma}(b \cdot(1 \cap a))=
\end{aligned}
$$

- If $\varepsilon \notin \sigma(a)$:

$$
\begin{aligned}
& \hat{\sigma}((1 \cap a) \cdot b)= \\
& \widehat{\sigma}(b \cdot(1 \cap a))=
\end{aligned}
$$

Example

$$
\text { Lang } \models(1 \cap a) \cdot b \simeq b \cdot(1 \cap a)
$$

Proof. Let $\sigma:\{a, b\} \rightarrow \mathcal{P}\left(X^{\star}\right)$.

- If $\varepsilon \in \sigma(a):$ then $\widehat{\sigma}(1 \cap a)=\{\varepsilon\}$, thus:

$$
\begin{aligned}
& \hat{\sigma}((1 \cap a) \cdot b)=\{\varepsilon\} \cdot \sigma(b)=\sigma(b) . \\
& \hat{\sigma}(b \cdot(1 \cap a))=\sigma(b) \cdot\{\varepsilon\}=\sigma(b) .
\end{aligned}
$$

- If $\varepsilon \notin \sigma(a)$:

$$
\begin{aligned}
& \widehat{\sigma}((1 \cap a) \cdot b)= \\
& \widehat{\sigma}(b \cdot(1 \cap a))=
\end{aligned}
$$

Example

$$
\text { Lang } \models(1 \cap a) \cdot b \simeq b \cdot(1 \cap a)
$$

Proof. Let $\sigma:\{a, b\} \rightarrow \mathcal{P}\left(X^{\star}\right)$.

- If $\varepsilon \in \sigma(a):$ then $\widehat{\sigma}(1 \cap a)=\{\varepsilon\}$, thus:

$$
\begin{aligned}
& \widehat{\sigma}((1 \cap a) \cdot b)=\{\varepsilon\} \cdot \sigma(b)=\sigma(b) . \\
& \widehat{\sigma}(b \cdot(1 \cap a))=\sigma(b) \cdot\{\varepsilon\}=\sigma(b) .
\end{aligned}
$$

- If $\varepsilon \notin \sigma(a)$: then $\widehat{\sigma}(1 \cap a)=\emptyset$, thus:

$$
\begin{aligned}
& \hat{\sigma}((1 \cap a) \cdot b)= \\
& \widehat{\sigma}(b \cdot(1 \cap a))=
\end{aligned}
$$

Example

$$
\text { Lang } \models(1 \cap a) \cdot b \simeq b \cdot(1 \cap a)
$$

Proof. Let $\sigma:\{a, b\} \rightarrow \mathcal{P}\left(X^{\star}\right)$.

- If $\varepsilon \in \sigma(a):$ then $\widehat{\sigma}(1 \cap a)=\{\varepsilon\}$, thus:

$$
\begin{aligned}
& \hat{\sigma}((1 \cap a) \cdot b)=\{\varepsilon\} \cdot \sigma(b)=\sigma(b) . \\
& \widehat{\sigma}(b \cdot(1 \cap a))=\sigma(b) \cdot\{\varepsilon\}=\sigma(b) .
\end{aligned}
$$

- If $\varepsilon \notin \sigma(a)$: then $\widehat{\sigma}(1 \cap a)=\emptyset$, thus:

$$
\begin{aligned}
& \widehat{\sigma}((1 \cap a) \cdot b)=\emptyset \cdot \sigma(b)=\emptyset . \\
& \widehat{\sigma}(b \cdot(1 \cap a))=\sigma(b) \cdot \emptyset=\emptyset .
\end{aligned}
$$

Example

$$
\text { Lang } \models(1 \cap a) \cdot b \simeq b \cdot(1 \cap a)
$$

Proof. Let $\sigma:\{a, b\} \rightarrow \mathcal{P}\left(X^{\star}\right)$.

- If $\varepsilon \in \sigma(a)$: then $\widehat{\sigma}(1 \cap a)=\{\varepsilon\}$, thus:

$$
\begin{aligned}
& \widehat{\sigma}((1 \cap a) \cdot b)=\{\varepsilon\} \cdot \sigma(b)=\sigma(b) . \\
& \widehat{\sigma}(b \cdot(1 \cap a))=\sigma(b) \cdot\{\varepsilon\}=\sigma(b) .
\end{aligned}
$$

- If $\varepsilon \notin \sigma(a)$: then $\widehat{\sigma}(1 \cap a)=\emptyset$, thus:

$$
\begin{aligned}
& \widehat{\sigma}((1 \cap a) \cdot b)=\emptyset \cdot \sigma(b)=\emptyset . \\
& \widehat{\sigma}(b \cdot(1 \cap a))=\sigma(b) \cdot \emptyset=\emptyset .
\end{aligned}
$$

Idea

Compare 1-free terms under the assumption that certain variables contain ε.

Comparing series parallel terms

$\mathcal{G}(u \cdot v):=\longrightarrow 0-G(u) \longrightarrow 0-G(v) \longrightarrow 0 \longrightarrow$

Example

Preorder

Preorder on graphs

$G \triangleleft H$ if there exists a graph morphism from H to G.

Characterization theorem

$$
u, v \in \mathbb{S P}_{\Sigma}::=a|u \cdot v| u \cap v
$$

Theorem

$$
\operatorname{Rel} \models u \subseteq v \Leftrightarrow \mathcal{G}(u) \triangleleft \mathcal{G}(v)
$$

Freyd \& Scedrov, Categories, Allegories, 1990
Andréka \& Bredikhin, The equational theory of union-free algebras of relations, 1995
Theorem

$$
\forall u, v \in \mathbb{S P}_{\Sigma}, \operatorname{Rel} \models u \subseteq v \Leftrightarrow \operatorname{Lang} \models u \subseteq v .
$$

Andréka, Mikulás \& Németi, The equational theory of Kleene lattices, 2011

Preorder on weak graphs

Definition

A weak graph is a pair of a graph and a set of tests.

Weak graph preorder
$\langle G, A\rangle \measuredangle\langle H, B\rangle$ if $B \subseteq A$ and there is an A-weak morphism from H to G.

Characterisation Theorem

$$
u, v \in \mathbb{T}_{X}: \because=1 \quad \mid \quad \text { a }|u \cdot v| u \cap v
$$

Characterisation Theorem

$$
u, v \in \mathbb{T}_{X}::=1|a| u \cdot v \mid u \cap v
$$

For every term $u \in \mathbb{T}_{X}$ we can build a weak graph $\mathcal{G}(u)$.

Characterisation Theorem

$$
u, v \in \mathbb{T}_{X}::=1|a| u \cdot v \mid u \cap v
$$

For every term $u \in \mathbb{T}_{X}$ we can build a weak graph $\mathcal{G}(u)$.

Corollary

$$
\text { Lang } \vDash u \subseteq v \Leftrightarrow \mathcal{G}(u) \triangleleft \mathcal{G}(v) .
$$

Simplifying expressions

$$
e, f \in \mathbb{E}_{X}::=0|1| a|e \cup f| e \cap f|e \cdot f| e^{\smile} \mid e^{\star} .
$$

Simplifying expressions

$$
e, f \in \mathbb{E}_{X}::=0|1| a|e \cup f| e \cap f|e \cdot f| e^{\smile} \mid e^{\star} .
$$

$$
\mathcal{T}: \mathbb{E}_{X} \rightarrow \mathcal{P}\left(\mathbb{T}_{X \cup X^{\prime}}\right)
$$

Simplifying expressions

$$
e, f \in \mathbb{E}_{X}::=0|1| a|e \cup f| e \cap f|e \cdot f| e^{\smile} \mid e^{\star} .
$$

$$
\mathcal{T}: \mathbb{E}_{X} \rightarrow \mathcal{P}\left(\mathbb{T}_{X \cup X^{\prime}}\right)
$$

Lang $\models e \subseteq f \Leftrightarrow \forall u \in \mathcal{T}(e), \exists v \in \mathcal{T}(f):$ Lang $\models u \subseteq v$

Free representation of expressions

Free representation of expressions

$$
\begin{gathered}
\downarrow_{X} \mathbb{E}_{X} \\
\mathcal{P}\left(\mathbb{T}_{X \cup X^{\prime}}\right)
\end{gathered}
$$

Free representation of expressions

Theorem
Lang $\models e \simeq f \Leftrightarrow \mathcal{R}(e)=\mathcal{R}(f)$

Outline

I. Introduction

II. Free Representation

III. Main results

Outlook

Axiomatisation

For series parallel terms
Assume a set of tests A,

$$
\overline{A \vdash_{s p} u \leq u} \quad \frac{A \vdash_{s p} u \leq v \quad A \vdash_{s p} v \leq w}{A \vdash_{s p} u \leq w}
$$

$$
\frac{A \vdash_{s p} u \leq v \quad A \vdash_{s p} u^{\prime} \leq v^{\prime}}{A \vdash_{s p} u \cdot u^{\prime} \leq v \cdot v^{\prime}} \quad \frac{A \vdash_{s p} u \leq v \quad A \vdash_{s p} u^{\prime} \leq v^{\prime}}{A \vdash_{s p} u \cap u^{\prime} \leq v \cap v^{\prime}}
$$

$$
\overline{A \vdash_{s p} u \cdot(v \cdot w)=(u \cdot v) \cdot w} \quad \overline{A \vdash_{s p} u \cap(v \cap w)=(u \cap v) \cap w}
$$

$$
\overline{A \vdash_{s p} u \leq u \cap u} \quad \overline{A \vdash_{s p} u \cap v \leq v \cap u} \quad \overline{A \vdash_{s p} u \cap v \leq u}
$$

$$
\frac{\operatorname{var}(u) \subseteq A}{A \vdash_{s p} v \leq u \cdot v}
$$

$$
\frac{\operatorname{var}(u) \subseteq A}{A \vdash_{s p} v \leq v \cdot u}
$$

Axiomatisation

without \star
If e doesn't use the Kleene star, then $\mathcal{T}(e)$ is finite. In this case we obtain a complete finite axiomatisation:

Axiomatisation

without \star
If e doesn't use the Kleene star, then $\mathcal{T}(e)$ is finite. In this case we obtain a complete finite axiomatisation:

- $\langle 0,1, \cdot \cdot, \cup\rangle$ is an idempotent semiring;

Axiomatisation

without \star
If e doesn't use the Kleene star, then $\mathcal{T}(e)$ is finite. In this case we obtain a complete finite axiomatisation:

- $\langle 0,1, \cdot \cdot, \cup\rangle$ is an idempotent semiring;
- $\langle\cup, \cap\rangle$ is a distributive lattice;

Axiomatisation

without \star

If e doesn't use the Kleene star, then $\mathcal{T}(e)$ is finite. In this case we obtain a complete finite axiomatisation:

- $\langle 0,1, \cdot \cdot, \cup\rangle$ is an idempotent semiring;
- $\langle\cup, \cap\rangle$ is a distributive lattice;
- mirror image laws:

$$
\begin{aligned}
0^{\hookrightarrow} & =0 \\
e \cdot f^{\hookrightarrow} & =f^{\llcorner } \cdot e^{\smile}
\end{aligned}
$$

$$
1^{\smile}=1
$$

$$
e^{\smile \smile}=e
$$

$$
e \cap f^{\llcorner }=e^{\smile} \cap f^{\smile}
$$

$$
e \cup f^{\backsim}=e^{\smile} \cup f^{\smile}
$$

Axiomatisation

without \star

If e doesn't use the Kleene star, then $\mathcal{T}(e)$ is finite. In this case we obtain a complete finite axiomatisation:

- $\langle 0,1, \cdot \cdot, \cup\rangle$ is an idempotent semiring;
- $\langle\cup, \cap\rangle$ is a distributive lattice;
- mirror image laws:

$$
0^{\sim}=0
$$

$$
1^{\smile}=1
$$

$$
e^{\smile \smile}=e
$$

$$
e \cdot f^{\smile}=f^{\smile} \cdot e^{\smile}
$$

$$
e \cap f^{\llcorner }=e^{\smile} \cap f^{\smile}
$$

$$
e \cup f^{\smile}=e^{\smile} \cup f^{\smile}
$$

- subunit laws:

Axiomatisation

without \star

If e doesn't use the Kleene star, then $\mathcal{T}(e)$ is finite. In this case we obtain a complete finite axiomatisation:

- $\langle 0,1, \cdot \cdot, \cup\rangle$ is an idempotent semiring;
- $\langle\cup, \cap\rangle$ is a distributive lattice;
- mirror image laws:

$$
\begin{aligned}
& 0^{\sim}=0 \\
& 1^{\smile}=1 \\
& e^{\smile \smile}=e \\
& e \cdot f^{\llcorner }=f^{\llcorner } \cdot e^{\smile} \\
& e \cap f^{\smile}=e^{\smile} \cap f^{\smile} \\
& e \cup f^{\smile}=e^{\smile} \cup f^{\smile}
\end{aligned}
$$

- subunit laws:

$$
1 \cap(e \cdot f)=1 \cap(e \cap f)
$$

Axiomatisation

without \star

If e doesn't use the Kleene star, then $\mathcal{T}(e)$ is finite. In this case we obtain a complete finite axiomatisation:

- $\langle 0,1, \cdot \cdot, \cup\rangle$ is an idempotent semiring;
- $\langle\cup, \cap\rangle$ is a distributive lattice;
- mirror image laws:

$$
\begin{aligned}
& 0^{\sim}=0 \\
& 1^{\smile}=1 \\
& e^{\smile \smile}=e \\
& e \cdot f^{\llcorner }=f^{\llcorner } \cdot e^{\smile} \\
& e \cap f^{\curvearrowleft}=e^{\smile} \cap f^{\smile} \\
& e \cup f^{\smile}=e^{\smile} \cup f^{\smile}
\end{aligned}
$$

- subunit laws:

$$
\begin{aligned}
1 \cap(e \cdot f) & =1 \cap(e \cap f) \\
1 \cap\left(e^{-}\right) & =1 \cap e
\end{aligned}
$$

Axiomatisation

without \star

If e doesn't use the Kleene star, then $\mathcal{T}(e)$ is finite. In this case we obtain a complete finite axiomatisation:

- $\langle 0,1, \cdot \cdot, \cup\rangle$ is an idempotent semiring;
- $\langle\cup, \cap\rangle$ is a distributive lattice;
- mirror image laws:

$$
\begin{aligned}
& 0^{\sim}=0 \\
& 1^{\smile}=1 \\
& e^{\smile \smile}=e \\
& e \cdot f^{\llcorner }=f^{\llcorner } \cdot e^{\smile} \\
& e \cap f^{\curvearrowleft}=e^{\smile} \cap f^{\smile} \\
& e \cup f^{\smile}=e^{\smile} \cup f^{\smile}
\end{aligned}
$$

- subunit laws:

$$
\begin{aligned}
1 \cap(e \cdot f) & =1 \cap(e \cap f) \\
1 \cap\left(e^{\smile}\right) & =1 \cap e \\
(1 \cap e) \cdot f & =f \cdot(1 \cap e)
\end{aligned}
$$

Axiomatisation

without \star

If e doesn't use the Kleene star, then $\mathcal{T}(e)$ is finite. In this case we obtain a complete finite axiomatisation:

- $\langle 0,1, \cdot \cdot, \cup\rangle$ is an idempotent semiring;
- $\langle\cup, \cap\rangle$ is a distributive lattice;
- mirror image laws:

$$
\begin{aligned}
& 0^{\sim}=0 \\
& 1^{\smile}=1 \\
& e^{\smile \smile}=e
\end{aligned}
$$

- subunit laws:

$$
\begin{aligned}
1 \cap(e \cdot f) & =1 \cap(e \cap f) \\
1 \cap\left(e^{\smile}\right) & =1 \cap e \\
(1 \cap e) \cdot f & =f \cdot(1 \cap e) \\
((1 \cap e) \cdot f) \cap g & =(1 \cap e) \cdot(f \cap g)
\end{aligned}
$$

Decidability of Kleene algebra

Finite state automata

$$
e, f::=0|1| a|e \cup f| e \cdot f \mid e^{\star}
$$

Decidability of identity-free Kleene lattices

Petri automata

$$
e, f::=0|a| e \cup f|e \cap f| e \cdot f \mid e^{+} .
$$

Decidability of Language algebra

Weighted Petri automata

$$
e, f::=0|1| a|e \cup f| e \cap f|e \cdot f| e^{\smile} \mid e^{\star} .
$$

Outline

I. Introduction

II. Free Representation

III. Main results

IV. Outlook

Open problems

I. Can we axiomatise with e^{\star} ?

No finite axiomatisation, but maybe finitely presentable?

Open problems

I. Can we axiomatise with e^{\star} ?

No finite axiomatisation, but maybe finitely presentable?
II. What about T?

Open problems

I. Can we axiomatise with e^{\star} ?

No finite axiomatisation, but maybe finitely presentable?
II. What about T?
(i) Won't work (with this approach) for a theory with unions:

Open problems

I. Can we axiomatise with e^{\star} ?

No finite axiomatisation, but maybe finitely presentable?
II. What about T?
(i) Won't work (with this approach) for a theory with unions: If $a b=c d$ then there is a word w such that:

a	b	
a	w	d
c		d

or

a		b
c	w	b
c	d	

Open problems

I. Can we axiomatise with e^{\star} ?

No finite axiomatisation, but maybe finitely presentable?
II. What about T?
(i) Won't work (with this approach) for a theory with unions:

If $a b=c d$ then there is a word w such that:

a	b					
a	w	d				
c		d	\quad or \quad	a		b
:---:	:---:	:---:				
c	w	b				
c	d					

$\operatorname{Lang} \models(a \cdot b) \cap(c \cdot d) \subseteq(a \cdot \top \cdot d) \cup(c \cdot \top \cdot b)$

Open problems

I. Can we axiomatise with e^{\star} ?

No finite axiomatisation, but maybe finitely presentable?
II. What about T?
(i) Won't work (with this approach) for a theory with unions:

If $a b=c d$ then there is a word w such that:

a	b					
a	w	d				
c		d	\quad or \quad	a		b
:---:	:---:	:---:				
c	w	b				
c	d					

$\operatorname{Lang} \models(a \cdot b) \cap(c \cdot d) \subseteq(a \cdot \top \cdot d) \cup(c \cdot \top \cdot b)$
(ii) What about the union-free fragment?

Open problems

I. Can we axiomatise with e^{\star} ?

No finite axiomatisation, but maybe finitely presentable?
II. What about T?
(i) Won't work (with this approach) for a theory with unions:

If $a b=c d$ then there is a word w such that:

a	b					
a	w	d				
c		d	\quad or \quad	a		b
:---:	:---:	:---:				
c	w	b				
c	d					

$\operatorname{Lang} \mid=(a \cdot b) \cap(c \cdot d) \subseteq(a \cdot \top \cdot d) \cup(c \cdot \top \cdot b)$
(ii) What about the union-free fragment? Just add $e \subseteq T$ and $T \subseteq T^{\smile}$, there is an equivalent graph construction.

Open problems

I. Can we axiomatise with e^{\star} ?

No finite axiomatisation, but maybe finitely presentable?
II. What about T?
(i) Won't work (with this approach) for a theory with unions:

If $a b=c d$ then there is a word w such that:

a	b					
a	w	d				
c		d	\quad or \quad	a		b
:---:	:---:	:---:				
c	w	b				
c	d					

$\operatorname{Lang} \models(a \cdot b) \cap(c \cdot d) \subseteq(a \cdot \top \cdot d) \cup(c \cdot \top \cdot b)$
(ii) What about the union-free fragment?

Just add $e \subseteq T$ and $T \subseteq T^{\smile}$, there is an equivalent graph construction. However, completeness is tricky...

That's all folks!

Thank you!

Freyd \& Scedrov, Categories, Allegories, 1990
Andréka \& Bredikhin, The equational theory of union-free algebras of relations, 1995
Andréka, Mikulás \& Németi, The equational theory of Kleene lattices, 2011
Bloom, Ésik \& Stefanescu, Notes on equational theories of relations, 1995
B. \& Pous, Petri Automata for Kleene Allegories, 2015
B., Reversible Kleene lattices, 2017

See more at:
http://paul.brunet-zamansky.fr

Outline

I. Introduction
II. Free Representation
III. Main results
IV. Outlook

