

ICALP, July 2019
Paul Brunet, Alexandra Silva University College London

UCL

DATA LANGUAGES

Sets of words over an infinite alphabet.
query-Based languages
XML processing
URLs
process-calculi

Such an alphabet may be respresented as a Nominal set.

THIS PAPER

Data lancuaces

Operational semantics: testing, alcorithms

Syntax:
specification, other alcorithms

Nominal automata

THIS PAPER

Data lancuaces

Operational semantics: testing, alcorithms

Syntax:
specification, other akorithms

Regular expressions with Brackets

OUTLINE

(2). Nominal automata

II. Brackets
III. Kleene Theorem

NOMINAL SETS

Notations $a, b, c, \cdots \in \mathbb{A}$

Transposition $(a b): \mathbb{A} \rightarrow \mathbb{A}$

$$
c \mapsto \begin{cases}a & \text { if } c=b \\ b & \text { if } c=a \\ c & \text { otherwise }\end{cases}
$$

NOMINAL SETS

Transposition $(a b): A \rightarrow \mathbb{A}$

$$
c \mapsto \begin{cases}a & \text { if } c=b \\ b & \text { if } c=a \\ c & \text { otherwise }\end{cases}
$$

Notations

$a, b, c, \cdots \in \mathbb{A}$
$\pi, \pi^{\prime}, \cdots \in \mathbb{S}_{\mathbb{A}}$

(Finitely supported) permutation: composition of transpositions.

NOMINAL SETS

Notations $a, b, c, \cdots \in \mathbb{A}$

$$
A
$$

$$
\begin{aligned}
& \pi, \pi^{\prime}, \cdots \in \mathbb{S}_{A} \\
& x, y, z, \cdots \in \mathbb{X}
\end{aligned}
$$

Transposition $(a b): \mathbb{A} \rightarrow \mathbb{A}$

$$
\begin{aligned}
& \mathbb{A} \rightarrow \mathbb{A} \\
& c \quad \begin{cases}a & \text { if } c=b \\
b & \text { if } c=a \\
c & \text { otherwise }\end{cases}
\end{aligned}
$$

(Finitely supported) permutation: composition of transpositions.
Nominal set
A nominal set is a set X with two functions

$$
\cdot: \mathfrak{S}_{\mathbb{A}} \times \mathbb{X} \rightarrow \mathbb{X} \text { and } \operatorname{supp}(-): \mathbb{X} \rightarrow \mathcal{P}_{f}(\mathbb{A})
$$

such that:

$$
\begin{aligned}
& \text { 1) } \pi \cdot\left(\pi^{\prime} \cdot x\right)=\pi \circ \pi^{\prime} \cdot x \\
& \text { 2) } \operatorname{supp}(\pi \cdot x)=\pi \cdot \operatorname{supp}(x) \\
& \text { 3) }(\forall a \in \operatorname{supp}(x), \pi(a)=a) \Rightarrow \pi \cdot x=x
\end{aligned}
$$

ORBIT-FINITE NOMINAL SETS

Orbits
$x \sim \mathcal{O}$ y if $\exists \pi, \pi \cdot x=y$
OrBit of $x:=\left\{\pi \cdot x \mid \pi \in \mathcal{S}_{A}\right\}=[x]_{\sim_{\mathcal{O}}}$.

ORBIT-FINITE NOMINAL SETS

OrBits
$x \sim_{\mathcal{O}} y$ ff $\exists \pi, \pi \cdot x=y$.
OrBit of $x:=\left\{\pi \cdot x \mid \pi \in \mathfrak{S}_{\mathbb{A}}\right\}=[x]_{\sim_{\mathcal{O}}}$.

A nominal set is orbit-finite if it has finitely many orbits, ie. \sim_{o} has finite index.

ORBIT-FINITE NOMINAL SETS

OrBits

$$
\begin{aligned}
& x \sim_{\mathcal{O}} y \text { iff } \exists \pi, \pi \cdot x=y . \\
& \text { OrBit of } x:=\left\{\pi \cdot x \mid \pi \in \mathfrak{S}_{A}\right\}=[x]_{\sim_{\mathcal{O}}} .
\end{aligned}
$$

A nominal set is orbit-finite if it has finitely many orbits, i.e. \sim_{o} has finite index.

Tractable subsets
$A \subseteq X$ is tractable if

1) A intersects finitely many orbits
2) A is supported By a finite set $S \subseteq A$, meanina

$$
(\forall a \in S, \pi(a)=a) \Rightarrow \forall x, x \in A \Leftrightarrow \pi \cdot x \in A .
$$

NFA
Non-deterministic Finite Automata

$$
\mathscr{A}:=\langle Q, \Sigma, \Delta, I, F\rangle
$$

Where:
Q finite set of states
Σ finite alphabet
$\Delta \subseteq Q \times \Sigma \times Q$ finite transition relation
$I, F \subseteq Q$ finite sets of initial/final states

Non-deterministic OrBit-Finite Automata

$$
\mathscr{A}:=\langle Q, \Sigma, \Delta, I, F\rangle
$$

Where:
Q tractable set of states
Σ tractable alphabet
$\Delta \subseteq Q \times \Sigma \times Q$ tractable transition relation
$I, F \subseteq Q$ tractable sets of initial/final states
Bojanczyk, Klin $\stackrel{\text { F Lasota, "Automata theory in nominal sets", LMCS } 2014}{ }$

DETERMINISTIC VS. NON-DETERMINISTIC

Theorem
NOFA are stricity more expressive than their deterministic counterparts.
Theorem
Equivalence of NOFA is undecidaBle.

OUTLINE

I. Nominal automata
(E) II. Brackets
III. Kleene Theorem

TRACES WITH BRACKETS

Given a nominal alphaset X, we Build a nominal set of symbols:

$$
\left.\mathbb{E}:=\mathbb{X} \cup\left\{\left\langle_{a}\right| a \in \mathbb{A}\right\} \cup\{a\rangle \mid a \in \mathbb{A}\right\} .
$$

TRACES WITH BRACKETS

Given a nominal alphaset X, we Build a nominal set of symBols:

$$
\left.\mathbb{E}:=\mathbb{X} \cup\left\{\left\langle_{a}\right| a \in \mathbb{A}\right\} \cup\{a\rangle \mid a \in \mathbb{A}\right\} .
$$

We Generate words over k from traces, i.e. words over $\mathbb{\Sigma}$.
Transducer
$s, s^{\prime} \in(\mathbb{A} \times \mathbb{A})^{\star}$

$$
s-\left[\left\langle_{a} / \varepsilon\right] \rightarrow \mathcal{T} s::(a, b)\right.
$$

$$
\text { (if } b \notin \pi_{2} s \text {) }
$$

$$
s-[x / \pi \cdot x] \rightarrow \mathcal{T} s
$$

$$
\text { (if } \forall a \in \operatorname{supp}(x), \pi(a)=s(a) \text {) }
$$

$$
\left.\left.\left.s::(a, b):: s^{\prime}-[a\rangle / b\right\rangle\right] \rightarrow \mathcal{T} s:: s^{\prime} \quad \text { (if } a \notin \pi_{1} s^{\prime} \wedge b \notin \pi_{2} s^{\prime}\right)
$$

$$
\mathcal{L}(u)=\left\{v \mid \perp-[u / v] \rightarrow_{\mathcal{T}} \perp\right\} .
$$

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle_{b} b_{a}\right\rangle\left\langle{ }_{a} a_{b}\right\rangle a\right\rangle
$$

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle_{b} b a\right\rangle\left\langle a_{a}{ }_{b}\right\rangle_{a}\right\rangle
$$

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle_{b} b b_{a}\right\rangle\left\langle a_{a}\right\rangle{ }_{a}\right\rangle
$$

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle_{b} b a\right\rangle\left\langle a_{a}\right\rangle{ }_{a}\right\rangle
$$

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle{ }_{b} b a\right\rangle\left\langle a_{a}\right\rangle{ }_{a}\right\rangle
$$

xy

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle_{b} b a\right\rangle\left\langle a_{a}{ }_{b}\right\rangle_{a}\right\rangle
$$

xy

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle_{b} b_{a}\right\rangle\left\langle{ }_{a} a_{b}\right\rangle a\right\rangle
$$

xy

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle_{b} b_{a}\right\rangle\left\langle{ }_{a} a b\right\rangle a\right\rangle
$$

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle_{b} b_{a}\right\rangle\left\langle{ }_{a} a b\right\rangle\right.
$$

Output:
$x y z$

FIRST LANGUAGES FROM WORDS WITH BRACKETS

Example

Trace:

$$
\left\langle{ }_{a} a\left\langle_{b} b_{a}\right\rangle\left\langle{ }_{a} a_{b}\right\rangle a\right\rangle
$$

$x y z$

LANGUAGES FROM WORDS WITH BRACKETS

Second Example

Trace:

$$
\left\langle a{ }_{a} a\left\langle_{a} a_{a}\right\rangle\left\langle a a_{a}\right\rangle\left\langle a_{a}\right\rangle_{a}\right\rangle
$$

Output:-

LANGUAGES FROM WORDS WITH BRACKETS

Second Example

Trace:

$$
\left.\underline{\left\langle a_{a}\right.} a\left\langle{ }_{a} a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle{ }_{a}\right\rangle
$$

LANGUAGES FROM WORDS WITH BRACKETS

Second Example

Trace:

$$
\left.\underline{\langle a} a\left\langle{ }_{a} a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle{ }_{a}\right\rangle
$$

LANGUAGES FROM WORDS WITH BRACKETS

 Second ExampleTrace:

$$
\left.\underline{\langle a} a\left\langle_{a} a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle{ }_{a}\right\rangle
$$

x

LANGUAGES FROM WORDS WITH BRACKETS

 Second ExampleTrace:

$$
\left.\underline{\langle a} a\left\langle_{a} a a\right\rangle\left\langle a a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle a\right\rangle
$$

xy

LANGUAGES FROM WORDS WITH BRACKETS

Second Example

Trace:

$$
\underline{\langle a} a\left\langle a a_{a}\right\rangle\left\langle a a_{a}\right\rangle\left\langle a_{a}{ }_{a}\right\rangle
$$

Stack:

Output:
xy

LANGUAGES FROM WORDS WITH BRACKETS

 Second ExampleTrace:

$$
\left.\underline{\langle a} a\left\langle_{a} a_{a}\right\rangle\left\langle{ }_{a} a a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle{ }_{a}\right\rangle
$$

$x y$

LANGUAGES FROM WORDS WITH BRACKETS

 Second ExampleTrace:

$$
\left.\underline{\langle a} a\left\langle_{a} a_{a}\right\rangle\left\langle{ }_{a} a{ }_{a}\right\rangle\left\langle a a_{a}\right\rangle a\right\rangle
$$

Output:
ry

LANGUAGES FROM WORDS WITH BRACKETS

 Second ExampleTrace:

$$
\left.\underline{\langle a} a\left\langle a a_{a}\right\rangle\left\langle a_{a} a_{a}\right\rangle\left\langle a a_{a}\right\rangle a\right\rangle
$$

Stack:

Output:
ry

LANGUAGES FROM WORDS WITH BRACKETS

 Second ExampleTrace:

$$
\underline{\langle a} a\left\langle{ }_{a} a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle\left\langle{ }_{a} a{ }_{a}\right\rangle, a
$$

my

LANGUAGES FROM WORDS WITH BRACKETS

 Second Example

$$
\underline{\left.\left.u_{a} a_{a} a_{a}\right)\left(a_{a} a_{a}\right)\left({ }_{a} a_{a}\right)_{a}\right)}
$$

$x y y z$

LANGUAGES FROM WORDS WITH BRACKETS

 Second Example

$$
\underline{\left.\underline{\langle a}\left(\lambda_{0} a_{2}\right)\left(a_{0} a_{2}\right)\left\langle a_{0} a_{2}\right)_{a}\right)}
$$

$$
x y y z
$$

LANGUAGES FROM WORDS WITH BRACKETS

 Second Example

$$
\underline{\left.\underline{\langle a} a\left\langle a a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle\left\langle{ }_{a} a_{a}\right\rangle_{a}\right\rangle}
$$

Stack:-

REGULAR EXPRESSIONS WITH BRACKETS

$e \in \operatorname{Reg}\langle\Sigma\rangle$,

$$
\mathcal{L}(e):=\bigcup_{u \in \llbracket e \rrbracket} \mathcal{L}(u) .
$$

where $\llbracket e \rrbracket$ is the regular lancuace (in the classical sense) associated with e.

Regular expressions with brackets

$e \in \operatorname{Reg}\langle\mathbb{\Sigma}\rangle$,

$$
\mathcal{L}(e):=\bigcup_{u \in \llbracket \llbracket \rrbracket} \mathcal{L}(u) .
$$

where $\llbracket e \rrbracket$ is the regular lancuage (in the classical sense) associated with e.

Memory finiteness
An expression e is memory finite if there is a Bound $N \in \mathbb{N}$ such that if $u v \in \llbracket e \rrbracket, u$ has at most N unmatched $\left\langle_{a}\right.$.

OUTLINE

I. Nominal automata
II. Brackets
nes ill. Kleene Theorem

FROM EXPRESSIONS TO AUTOMATA

Theorem
For every memory-finite expression e there is a NOFA \mathscr{A} such that $\mathcal{L}(e)=\mathcal{L}(\mathscr{A})$.

Idea of the proof: compose the NFA for e with the tranducer \mathcal{T}.

FROM AUTOMATA TO EXPRESSIONS
Theorem
For every NOFA \mathscr{A} there is a memory-finite expression e such that $\mathcal{L}(e)=\mathcal{L}(\mathscr{A})$.

Idea of the proof:

FROM AUTOMATA TO EXPRESSIONS
Theorem
For every NOFA \mathscr{A} there is a memory-finite expression e such that $\mathcal{L}(e)=\mathcal{L}(\mathscr{A})$.

Idea of the proof:
pick a finite representative (NFA) of \mathscr{A};

FROM AUTOMATA TO EXPRESSIONS
Theorem
For every NOFA \mathscr{A} there is a memory-finite expression e such that $\mathcal{L}(e)=\mathcal{L}(\mathscr{A})$.

Idea of the proof:
pick a finite representative (NFA) of \mathscr{A};
transform transitions:

where $\operatorname{supp}(p) \backslash \operatorname{supp}(q)=\left\{a_{1} \ldots a_{n}\right\}$

$$
\operatorname{supp}(q) \backslash \operatorname{supp}(p)=\left\{b_{1} \ldots b_{m}\right\} .
$$

FROM AUTOMATA TO EXPRESSIONS
Theorem
For every NOFA \mathscr{A} there is a memory-finite expression e such that $\mathcal{L}(e)=\mathcal{L}(\mathscr{A})$.

Idea of the proof:
pick a finite representative (NFA) of \mathscr{A};
transform transitions:
(D) \xrightarrow{x} (a)
(P) $\left.\quad\left\langle{b_{1}}^{\cdots}\left\langle_{b_{m}} x_{a_{1}}\right\rangle \cdots a_{n}\right\rangle\right)$ (a)
where $\operatorname{supp}(p) \backslash \operatorname{supp}(q)=\left\{a_{1} \ldots a_{n}\right\}$
$\operatorname{supp}(q) \backslash \operatorname{supp}(p)=\left\{b_{1} \ldots b_{m}\right\}$.

FROM AUTOMATA TO EXPRESSIONS
Theorem
For every NOFA \mathscr{A} there is a memory-finite expression e such that $\mathcal{L}(e)=\mathcal{L}(\mathscr{A})$.

Idea of the proof:
pick a finite representative (NFA) of \mathscr{A};
transform transitions:
(D) $\underset{ }{\longrightarrow}$ (a)
(P) $\left.\quad\left\langle_{b_{1}} \cdots\left\langle_{b_{m}} x_{a_{1}}\right\rangle \cdots a_{a_{n}}\right\rangle\right)$ (a)
where $\operatorname{supp}(p) \backslash \operatorname{supp}(q)=\left\{a_{1} \ldots a_{n}\right\}$
$\operatorname{supp}(q) \backslash \operatorname{supp}(p)=\left\{b_{1} \ldots b_{m}\right\}$.
extract an expression from the NFA.

THAT'S ALL FOLKS!

Thank you!

See more at:
http://paul.brunet-zamansky.fr

