
Recent developments
in

concurrent Kleene algebra

IRIS Seminar - London
December 2020

Paul Brunet
University College London

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/39

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/39

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/39

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/39

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/39

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/39

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/39

Kleene algebra: the algebra of regular expressions

e, f ∈ EA ::= 0 | 1 | a | e · f | e + f | e?

J K : EA → P (A?)

example:

Ja · ((a+ b) · a)?K =

{
words of odd length over the

alphabet {a, b} such that every

other letter is an a

}
= {a, aaa, aba, aaaaa, abaaa, aaaba, ababa, ...}

Interpretation: regular languages

Paul Brunet 3/39

Kleene algebra: the algebra of regular expressions

e + e=e e + f=f + e e + (f + g)=(e + f) + g
e + 0=0 e · 1=e = 1 · e e · (f · g)=(e · f) · g
e · 0=0 = 0 · e e · (f + g)=e · f + e · g (e + f) · g=e · g + f · g

e? = 1 + e · e? e · f ≤ f ⇒ e? · f ≤ f

The axioms of KA

KA ` e = f ⇔ JeK = Jf K.
Theorem

Kozen, “A completeness theorem for Kleene algebras and the algebra of regular events”,

LiCS ’90

Paul Brunet 4/39

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings

Paul Brunet 5/39

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax
abort execution

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings

Paul Brunet 5/39

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax
abort execution

skip

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings

Paul Brunet 5/39

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax
abort execution

skip

atomic action

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings

Paul Brunet 5/39

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax
abort execution

skip

atomic action

test

atomic test
Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings

Paul Brunet 5/39

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax
abort execution

skip

atomic action

test

atomic test

sequential composition

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings

Paul Brunet 5/39

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax
abort execution

skip

atomic action

test

atomic test

sequential composition

non-deterministic choice

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings

Paul Brunet 5/39

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax
abort execution

skip

atomic action

test

atomic test

sequential composition

non-deterministic choice

non-deterministic loop

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings

Paul Brunet 5/39

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings

Paul Brunet 5/39

KAT: the algebra of imperative programs
The axioms of KAT:

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

KAT ` e = f ⇔ JeK = Jf K.
Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Theorem

Subsumes Hoare logic: {b} p {c}⇔ b · p ≤ p · c
⇔ b · p = b · p · c
⇔ b · p · ¬c = 0

Can we do the same for concurrent programs?

Paul Brunet 6/39

KAT: the algebra of imperative programs
The axioms of KAT:

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

KAT ` e = f ⇔ JeK = Jf K.
Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Theorem

Subsumes Hoare logic: {b} p {c}⇔ b · p ≤ p · c
⇔ b · p = b · p · c
⇔ b · p · ¬c = 0

Can we do the same for concurrent programs?

Paul Brunet 6/39

KAT: the algebra of imperative programs
The axioms of KAT:

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

KAT ` e = f ⇔ JeK = Jf K.
Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Theorem

Subsumes Hoare logic: {b} p {c}⇔ b · p ≤ p · c
⇔ b · p = b · p · c
⇔ b · p · ¬c = 0

Can we do the same for concurrent programs?
Paul Brunet 6/39

Outline

Recent developments in CKA

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Ongoing and future work

Paul Brunet 7/39

Outline

Recent developments in CKA

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Ongoing and future work

Paul Brunet 8/39

bi-Kleene Algebra

e, f ::= 1 | 0 | x | e · f | e ‖ f | e + f | e? | e!

A bi-Kleene algebra is a structure 〈A, 0, 1, ·, ‖,+, ?, !〉 such that:

〈A, 0, 1, ·,+, ?〉 is a KA

〈A, 0, 1, ‖,+, !〉 is a commutative KA.

Definition

What is the free bi-KA?

Paul Brunet 9/39

bi-Kleene Algebra

e, f ::= 1 | 0 | x | e · f | e ‖ f | e + f | e? | e!

A bi-Kleene algebra is a structure 〈A, 0, 1, ·, ‖,+, ?, !〉 such that:

〈A, 0, 1, ·,+, ?〉 is a KA

〈A, 0, 1, ‖,+, !〉 is a commutative KA.

Definition

What is the free bi-KA?

Paul Brunet 9/39

Pomsets: concurrent traces

A is some alphabet of actions.

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

Up-to isomorphism ≡.

Paul Brunet 10/39

Pomsets: concurrent traces
A is some alphabet of actions.

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

Up-to isomorphism ≡.

Paul Brunet 10/39

Pomsets: concurrent traces
A is some alphabet of actions.

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

Up-to isomorphism ≡.

Paul Brunet 10/39

Pomsets: concurrent traces
A is some alphabet of actions.

a

a

b

b

c

c

d d

P = 〈EP ,6P , λP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

Up-to isomorphism ≡.

Paul Brunet 10/39

Combining pomsets

a = a 1 = P1 =
a b

a

P2 =

c

b

P1;P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b

Paul Brunet 11/39

Combining pomsets

a = a 1 = P1 =
a b

a

P2 =

c

b

P1;P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b

Paul Brunet 11/39

Combining pomsets

a = a 1 = P1 =
a b

a

P2 =

c

b

P1;P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b

Paul Brunet 11/39

Completeness of biKA

J1K := {1} J0K := ∅
JxK := {x} Je + f K := JeK ∪ Jf K

Je · f K := {P;Q | P ∈ JeK, Q ∈ Jf K} Je ‖ f K := {P ‖ Q | P ∈ JeK, Q ∈ Jf K}
Je?K := {P1; · · · ;Pn | n ∈ N, Pi ∈ JeK} Je!K := {P1 ‖ · · · ‖ Pn | n ∈ N, Pi ∈ JeK}

biKA ` e = f ⇔ JeK ≡ Jf K.

Theorem

Laurence & Struth, “Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Ra-

tional Pomset Languages”, RAMiCS ’14

Paul Brunet 12/39

Concurrent Kleene Algebra

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d).

Interchange law

A concurrent Kleene algebra is a weak bi-Kleene algebra 〈A, 0, 1, ·, ‖,+, ?〉
satisfying the interchange law.

CKA

No parallel iteration

Paul Brunet 13/39

Interleavings and subsumption

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d).

Interchange law

a

b

c

d

a

b

c

d

v

P v Q when there is a homomorphism from Q to P , i.e. a bijective map

ϕ : EQ → EP such that λP ◦ ϕ = λQ and ϕ (≤Q) ⊆≤P .

Lv := {P | ∃Q ∈ L : P v Q } .

Paul Brunet 14/39

Completeness and decidability of CKA

The problem of testing whether two given expressions e, f denote the

same closed language is ExpSpace-complete.

Theorem

B., Pous, & Struth, “On Decidability of Concurrent Kleene Algebra”, CONCUR ’17

CKA ` e = f ⇔ JeKv = Jf Kv.
Theorem

Kappé, B., Silva, & Zanasi, “Concurrent Kleene Algebra: Free Model and Completeness”, ESOP

’18

Paul Brunet 15/39

Outline

Recent developments in CKA

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Ongoing and future work

Paul Brunet 16/39

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 (⊥ = 0)
= 0 (CKA axioms)

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 17/39

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 (⊥ = 0)
= 0 (CKA axioms)

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 17/39

CKAT: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 (⊥ = 0)
= 0 (CKA axioms)

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 17/39

Who’s to blame?

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 = 0 (⊥ = 0 + CKA axioms)

a ∧ b = a · b
“If we observe a, and then observe b without any action in between, then

both observations are made on the same state. Therefore that state

simultaneously satisfies a and b.”

a ∧ b ≤ a · b

Paul Brunet 18/39

Who’s to blame?

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 = 0 (⊥ = 0 + CKA axioms)

a ∧ b = a · b
“If we observe a, and then observe b without any action in between, then

both observations are made on the same state. Therefore that state

simultaneously satisfies a and b.”

a ∧ b ≤ a · b

Paul Brunet 18/39

Who’s to blame?

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 = 0 (⊥ = 0 + CKA axioms)

a ∧ b = a · b
“If we observe a, and then observe b without any action in between, then

both observations are made on the same state. Therefore that state

simultaneously satisfies a and b.”

a ∧ b ≤ a · b

Paul Brunet 18/39

CKAO - Syntax

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e ‖ f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of CKA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 ≤ t1 · t2 ⊥ = 0

The axioms of CKAO

Paul Brunet 19/39

CKAO - Model

α1 1
α2 1
α3 0

α1 1
α2 1
α3 0

a

b

α1 0
α2 0
α3 0

c
α1 0
α2 0
α3 1

α1 1
α2 0
α3 0

d
α1 1
α2 1
α3 0

b

a

α1 0
α2 0
α3 0

c
α1 0
α2 0
α3 1

α1 1
α2 0
α3 0

d

v

CKAO ` e = f ⇔ JeK↓ = Jf K↓.
Theorem

Paul Brunet 20/39

Interlude: (C)KA with hypotheses

H : set of hypotheses e ≤ f over some fixed alphabet A.

extra structure on the alphabet (e.g. α ∧ β = β ∧ α);
extra structure on traces (e.g. α ≤ α · α)
other domain-specific assumptions.

CKA+ H ` e = f ⇒ JeK↓H = Jf K↓H
Theorem

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”, FoSSaCS ’19

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with Observations:

from Hypotheses to Completeness”, FoSSaCS ’20

Paul Brunet 21/39

Outline

Recent developments in CKA

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Ongoing and future work

Paul Brunet 22/39

Litmus test: sequential consistency

{ r0 == 0 && r1 == 0 }

x := 1 y := 1
r0 := y r1 := x

{ !(r0 == 1 || r1 == 1) }

Ingredients:

Assignments x ← 1
Observations r0 = 0

Paul Brunet 23/39

What kind of observations do we need?
First attempt: boolean algebra

Atomic observations: VAR == VAL e.g. r0 == 1

Boolean formula: set of memory states VAR→ VAL e.g.
r0 1
r1 0

Assignments:
∑

s∈State s · (v ← n) · s[v 7→ n], i.e.

Jx ← 1K :=
{

x 0
y 0

x 1
y 0[x ← 1] , x 0

y 1
x 1
y 1[x ← 1]

}

x 0
y 0

x 1
y 0[x ← 1]

x 0
y 0

x 0
y 1[y ← 1]

Problem: parallel composition?

Paul Brunet 24/39

What kind of observations do we need?
First attempt: boolean algebra

Atomic observations: VAR == VAL e.g. r0 == 1

Boolean formula: set of memory states VAR→ VAL e.g.
r0 1
r1 0

Assignments:
∑

s∈State s · (v ← n) · s[v 7→ n], i.e.

Jx ← 1K :=
{

x 0
y 0

x 1
y 0[x ← 1] , x 0

y 1
x 1
y 1[x ← 1]

}

x 0
y 0

x 1
y 0[x ← 1]

x 0
y 0

x 0
y 1[y ← 1]

Problem: parallel composition?

Paul Brunet 24/39

What kind of observations do we need?
First attempt: boolean algebra

Atomic observations: VAR == VAL e.g. r0 == 1

Boolean formula: set of memory states VAR→ VAL e.g.
r0 1
r1 0

Assignments:
∑

s∈State s · (v ← n) · s[v 7→ n], i.e.

Jx ← 1K :=
{

x 0
y 0

x 1
y 0[x ← 1] , x 0

y 1
x 1
y 1[x ← 1]

}

x 0
y 0

x 1
y 0[x ← 1]

x 0
y 0

x 0
y 1[y ← 1]

Problem: parallel composition?

Paul Brunet 24/39

What kind of observations do we need?
First attempt: boolean algebra

Atomic observations: VAR == VAL e.g. r0 == 1

Boolean formula: set of memory states VAR→ VAL e.g.
r0 1
r1 0

Assignments:
∑

s∈State s · (v ← n) · s[v 7→ n], i.e.

Jx ← 1K :=
{

x 0
y 0

x 1
y 0[x ← 1] , x 0

y 1
x 1
y 1[x ← 1]

}

x 0
y 0

x 1
y 0[x ← 1]

x 0
y 0

x 0
y 1[y ← 1]

Problem: parallel composition?

Paul Brunet 24/39

Algebra of partial observations

Idea: Instead of memory state VAR→ VAL, consider partial functions VAR ⇀ VAL.

t, t1, t2 ∈ OT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | t

Same axioms as BA regarding ∨,∧,>,⊥, plus:

p ≤ q ⇔ p ∧ q = ⊥
v = n =

∨
m 6=n v = m

PCDL of observations

Paul Brunet 25/39

Causality vs compositionality

x 0
y 0 x ← 1

x 1
y 0

x 0
y 0 y ← 1 x 0

y 1

x ← 0

Solution: we need to explicitly close the system.

JeK → JeK ∩ CausalPomsets.

Litmus test:

t := (r0 = 0 ∧ r1 = 0) · ((x ← 1 · r0 ← y) ‖ (y ← 1 · r1 ← x)) · (r0 = 1 ∨ r1 ∨ 1)

JtK ∩ CausalPomsets = ∅

Paul Brunet 26/39

Causality vs compositionality

x 0
y 0 x ← 1

x 1
y 0

x 0
y 0 y ← 1 x 0

y 1

x ← 0

Solution: we need to explicitly close the system.

JeK → JeK ∩ CausalPomsets.

Litmus test:

t := (r0 = 0 ∧ r1 = 0) · ((x ← 1 · r0 ← y) ‖ (y ← 1 · r1 ← x)) · (r0 = 1 ∨ r1 ∨ 1)

JtK ∩ CausalPomsets = ∅

Paul Brunet 26/39

Causality vs compositionality

x 0
y 0 x ← 1

x 1
y 0

x 0
y 0 y ← 1 x 0

y 1

x ← 0

Solution: we need to explicitly close the system.

JeK → JeK ∩ CausalPomsets.

Litmus test:

t := (r0 = 0 ∧ r1 = 0) · ((x ← 1 · r0 ← y) ‖ (y ← 1 · r1 ← x)) · (r0 = 1 ∨ r1 ∨ 1)

JtK ∩ CausalPomsets = ∅

Paul Brunet 26/39

Outline

Recent developments in CKA

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Ongoing and future work

Paul Brunet 27/39

Mutual exclusion

print(counter);

atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }

print(counter);

Ò

x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 28/39

Mutual exclusion

print(counter);

atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }

print(counter);

Ò

x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 28/39

Mutual exclusion

print(counter);

atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }

print(counter);

Ò

x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 28/39

Mutual exclusion

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò

x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 28/39

Mutual exclusion

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò

x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 28/39

Mutual exclusion

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò

x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 28/39

Pomsets with boxes

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP

,BP

〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

set of boxes
⊆ P 6=∅ (EP)

Paul Brunet 29/39

Pomsets with boxes

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP ,BP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

set of boxes
⊆ P 6=∅ (EP)

Paul Brunet 29/39

Subsumption with boxes

1 : a

2 : a

3 : b

4 : b

5 : c 6 : c

7 : d
8 : d

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

v

P v Q when there is a homomorphism from Q to P , i.e. a bijective map

ϕ : EQ → EP such that

1) λP ◦ ϕ = λQ

2) ϕ (≤Q) ⊆≤P

3) ϕ (BP) ⊆ BQ

Paul Brunet 30/39

Subsumption with boxes

1 : a

2 : a

3 : b

4 : b

5 : c 6 : c

7 : d
8 : d

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

v

P v Q when there is a homomorphism from Q to P , i.e. a bijective map

ϕ : EQ → EP such that

1) λP ◦ ϕ = λQ

2) ϕ (≤Q) ⊆≤P

3) ϕ (BP) ⊆ BQ
Paul Brunet 30/39

Axiomatisation

[[e]] = [e]

[1] = 1
[0] = 0

[e + f] = [e] + [f]

[e] ≤ e

JeK = Jf K⇔ CKA+ B ` e = f .

Claim

Paul Brunet 31/39

Mutual exclusion (II)

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò

x Ix bx

y Iy by

Ò

Breaking mutual exclusion ↔ admitting an execution with the

following “pattern”: x bx

y by

Paul Brunet 32/39

Pomset logic

ϕ,ψ ::= ⊥ | a | ϕ ∨ ψ | ϕ ∧ ψ | ϕIψ | ϕ?ψ | [ϕ] | LϕM

P |= ϕIψ iff ∃P1,P2 such that P w P1 · P2 and P1 |= ϕ and P2 |= ψ

P |= ϕ?ψ iff ∃P1,P2 such that P w P1 ‖ P2 and P1 |= ϕ and P2 |= ψ

P |= [ϕ] iff ∃Q such that P w [Q] and Q |= ϕ

P |= LϕM iff ∃P ′,Q such that P w P ′ and P ′ E Q and Q |= ϕ.

P w Q ⇔ ∀ϕ, (P |= ϕ⇒ Q |= ϕ) .

Theorem

Paul Brunet 33/39

Mutual exclusion (III)

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò

x Ix bx

y Iy by

Ò

Breaking mutual exclusion ↔ admitting an execution with the

following “pattern”: x bx

y by

↔ P |= L(x ? y)I (bx ?by)M

Paul Brunet 34/39

Outline

Recent developments in CKA

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Ongoing and future work

Paul Brunet 35/39

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 36/39

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 36/39

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 36/39

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 36/39

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 36/39

Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What kinds of properties of behaviours are interesting and/or tractable?

Paul Brunet 37/39

Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What kinds of properties of behaviours are interesting and/or tractable?

Paul Brunet 37/39

Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What kinds of properties of behaviours are interesting and/or tractable?

Paul Brunet 37/39

Extensions of the model

Merging boxes: [e · [f] · g] = [e · f · g].

≤

Beyond partial memory states: Arbitrary coherence relation between

atomic observations.

v = 1 � v = 0

Add data: Nominal algebras.

Paul Brunet 38/39

Extensions of the model

Merging boxes: [e · [f] · g] = [e · f · g].

≤

Beyond partial memory states: Arbitrary coherence relation between

atomic observations.

v = 1 � v = 0

Add data: Nominal algebras.

Paul Brunet 38/39

Extensions of the model

Merging boxes: [e · [f] · g] = [e · f · g].

≤

Beyond partial memory states: Arbitrary coherence relation between

atomic observations.

v = 1 � v = 0

Add data: Nominal algebras.

Paul Brunet 38/39

That’s all folks!

Thank you!

See more at:

http://paul.brunet-zamansky.fr

Paul Brunet 39/39

http://paul.brunet-zamansky.fr

Outline

Recent developments in CKA

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Ongoing and future work

Paul Brunet 39/39

	
	Concurrent Kleene Algebra
	CKA with observations
	Partially observable CKA
	CKA with boxes
	Ongoing and future work

