Recent developments

IN
 concurrent Kleene algebra

IRIS Seminar - London
December 2020
Paul Brunet
University College London

\square

Concurrent Kleene Algebra

Concurrent Kleene Algebra

C.A.R. Tony Hoare ${ }^{1}$, Bernhard Möller ${ }^{2}$, Georg Struth 3, and Ian Wehrman ${ }^{4}$

1 Microsoft Research, Cambridge, UK
${ }^{2}$ Universität Augsburg, Germany
${ }^{3}$ University of Sheffield, UK
${ }^{4}$ University of Texas at Austin, USA

Concurrent Kleene Algebra

On Locality and the Exchange Law for Concurrent Processes

C.A.R. Hoare ${ }^{1}$, Akbar Hussain ${ }^{2}$, Bernhard Möller ${ }^{3}$, Peter W. O'Hearn ${ }^{2}$, Rasmus Lerchedahl Petersen ${ }^{2}$, and Georg Struth ${ }^{4}$
${ }^{1}$ Microsoft Research Cambridge
${ }^{2}$ Queen Mary University of London
${ }^{3}$ Universität Augsburg
${ }^{4}$ University of Sheffield

Concurrent Kleene Algebra

Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Rational Pomset Languages

Michael R. Laurence and Georg Struth
Department of Computer Science, University of Sheffield, UK
\{m.laurence,g.struth\}@sheffield.ac.uk

Concurrent Kleene Algebra with Tests

Peter Jipsen
Chapman University, Orange, California 92866, USA

First completeness theorem
(without the exchange law), CKA with tests is introduced.

Concurrent Kıeene Algebra

Concurrent Kleene Algebra

On Decidability of Concurrent Kleene Algebra*

Paul Brunet ${ }^{1}$, Damien Pous ${ }^{2}$, and Georg Struth ${ }^{3}$
1 Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
2 Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
3 Department of Computer Science, The University of Sheffield, UK

Concurrent Kleene Algebra

Concurrent Kleene Algebra: Free Model and Completeness

Tobias Kappé ${ }^{(凶)}$, Paul Brunet, Alexandra Silva, and Fabio Zanasi

University College London, London, UK

tkappe@cs.ucl.ac.uk

 Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness

 Jana Wagemaker (©), and Fabio Zanasi (©

University College London, London, United Kingdom; tkappe@cs.ucl.ac.uk

Pomsets with Boxes: Protection, Separation, and Locality in Concurrent Kleene Algebra

Paul Brunet (망
University College London, UK
paul.brunet-zamansky.fr paul@brunet-zamansky.fr
David Pym ©
University College London, UK
www.cantab.net/users/david.pym/
d.pym@ucl.ac.uk

Kıeene algebra: the algebra of regular expressions

$$
e, f \in E_{A}::=0|1| a|e \cdot f| e+f \mid e^{\star}
$$

Interpretation: regular lancuaces

$$
\llbracket \|: E_{A} \rightarrow \mathcal{P}\left(A^{\star}\right)
$$

example:

$$
\begin{aligned}
\llbracket a \cdot((a+b) \cdot a)^{\star} \rrbracket & =\left\{\begin{array}{l}
\text { words of odd lencth over the } \\
\text { alphabet }\{a, b\} \text { such that every } \\
\text { other letter is an a }
\end{array}\right\} \\
& =\{a, \text { aaa, aba, aaaaa, abaaa, aaaba, ababa, } \ldots\}
\end{aligned}
$$

KlEENE ALGEBRA: THE ALGEBRA OF REGULAR EXPRESSIONS

The axioms of $K A$

$$
\begin{array}{ccc}
e+e=e & e+f=f+e & e+(f+g)=(e+f)+g \\
e+0=0 & e \cdot 1=e=1 \cdot e & e \cdot(f \cdot g)=(e \cdot f) \cdot g \\
e \cdot 0=0=0 \cdot e \quad e \cdot(f+g)=e \cdot f+e \cdot g & (e+f) \cdot g=e \cdot g+f \cdot g \\
e^{\star}=1+e \cdot e^{\star} & e \cdot f \leq f \Rightarrow e^{\star} \cdot f \leq f
\end{array}
$$

Theorem

$$
K A \vdash e=f \Leftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket .
$$

Kozen, "A completeness theorem for Kleene algeBras and the algeBra of recular events", Lics '90

KAT: the algebra of imperative procrams

Syntax

$$
\begin{aligned}
& e, f \in E_{A \cup B_{T}}::=0|1| a \in A\left|t \in B_{T}\right| e \cdot f|e+f| e^{\star} \\
& t, t_{1}, t_{2} \in B_{T}::=T|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
\end{aligned}
$$

Encodes a simple While lancuace:

$$
\text { if } b \text { then } p \text { else } q \mapsto b \cdot p+\neg b \cdot q \quad \text { while } b \text { do } p \mapsto(b \cdot p)^{\star} \cdot \neg b
$$

KAT: the algebra of imperative procrams

| Syntax abort execution |
| ---: | :--- |
| $e, f \in E_{A \cup B_{T}}::=0\|1\| a \in A\left\|t \in B_{T}\right\| e \cdot f\|e+f\| e^{\star}$ |
| $t, t_{1}, t_{2} \in B_{T}::=T\|\perp\| \alpha \in T\left\|t_{1} \wedge t_{2}\right\| t_{1} \vee t_{2} \mid \neg t$ |

Encodes a simple While lancuace:

$$
\text { if } b \text { then } p \text { else } q \mapsto b \cdot p+\neg b \cdot q \quad \text { while } b \text { do } p \mapsto(b \cdot p)^{\star} \cdot \neg b
$$

KAT: the algebra of imperative programs

Syntax abort execution	
	$e, f \in E_{A \cup B_{T}}:=0\|1\| a \in A\left\|t \in B_{T}\right\| e \cdot f\|e+f\| e^{\star}$
	$t, t_{1}, t_{2} \in B_{T}::=T\|\perp\| \alpha \in T\left\|t_{1} \wedge t_{2}\right\| t_{1} \vee t_{2} \mid \neg t$

Encodes a simple While lancuace:

$$
\text { if } b \text { then } p \text { else } q \mapsto b \cdot p+\neg b \cdot q \quad \text { while } b \text { do } p \mapsto(b \cdot p)^{\star} \cdot \neg b
$$

KAT: the algebra of imprerative programs

$$
t, t_{1}, t_{2} \in B_{T}::=\top|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
$$

Encodes a simple While lancuace:

$$
\text { if } b \text { then } p \text { else } q \mapsto b \cdot p+\neg b \cdot q \quad \text { while } b \text { do } p \mapsto(b \cdot p)^{\star} \cdot \neg b
$$

$$
t, t_{1}, t_{2} \in B_{T}::=\top|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
$$

Encodes a simple While lancuace:

$$
\text { if } b \text { then } p \text { else } q \mapsto b \cdot p+\neg b \cdot q \quad \text { while } b \text { do } p \mapsto(b \cdot p)^{\star} \cdot \neg b
$$

KAT: the alcebra of imperative prggrams

$$
t, t_{1}, t_{2} \in B_{T}::=\top|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
$$

Encodes a simple While lancuace:

$$
\text { if } b \text { then } p \text { else } q \mapsto b \cdot p+\neg b \cdot q \quad \text { while } b \text { do } p \mapsto(b \cdot p)^{\star} \cdot \neg b
$$

Encodes a simple While lancuage:

$$
\text { if } b \text { then } p \text { else } q \mapsto b \cdot p+\neg b \cdot q \quad \text { while } b \text { do } p \mapsto(b \cdot p)^{\star} \cdot \neg b
$$

Encodes a simple While lancuace:

$$
\text { if } b \text { then } p \text { else } q \mapsto b \cdot p+\neg b \cdot q \quad \text { while } b \text { do } p \mapsto(b \cdot p)^{\star} \cdot \neg b
$$

KAT: the algebra of imperative procrams

Syntax

$$
\begin{aligned}
& e, f \in E_{A \cup B_{T}}::=0|1| a \in A\left|t \in B_{T}\right| e \cdot f|e+f| e^{\star} \\
& t, t_{1}, t_{2} \in B_{T}::=T|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
\end{aligned}
$$

Encodes a simple While lancuace:

$$
\text { if } b \text { then } p \text { else } q \mapsto b \cdot p+\neg b \cdot q \quad \text { while } b \text { do } p \mapsto(b \cdot p)^{\star} \cdot \neg b
$$

Interpretation: lancuaces of Guarded strincs
Guarded strings: alternating sequences of states $\in 2^{T} \frac{1}{T}$ actions $\in A$.

KAT: THE AlGEbra OF IMPERATIVE PROGRAMS

The axioms of KAT:
The axioms of $K A$.
For tests, the axioms of Boolean alceBra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad T=1 \quad \perp=0
$$

KAT $\vdash e=f \Leftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket$.
Theorem
Kozen $\%$ Smith, "Kleene alcesra with tests: Completeness and decidasility", CSL '96

KAT: THE AlGEbra OF IMPERATIVE PROGRAMS

The axioms of KAT:
The axioms of $K A$.
For tests, the axioms of Boolean alceBra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad T=1 \quad \perp=0
$$

KAT $\vdash e=f \Leftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket$.
Theorem
Kozen $\#$ Smith, "Kleene alkesra with tests: Completeness and decidasility", CSL '96

Subsumes Hoare locic:

$$
\begin{aligned}
\{b\} p\{c\} & \Leftrightarrow b \cdot p \leq p \cdot c \\
& \Leftrightarrow b \cdot p=b \cdot p \cdot c \\
& \Leftrightarrow b \cdot p \cdot \neg c=0
\end{aligned}
$$

KAT: the algebra of imperative programs

The axioms of KAT:
The axioms of $K A$.
For tests, the axioms of Boolean alceBra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad \top=1 \quad \perp=0
$$

KAT $\vdash e=f \Leftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket$.
Theorem
Kozen क Smith, "Kleene alkeBra with tests: Completeness and decidability", CSL 'و6

Sußsumes Hoare logic: $\{b\} p\{c\} \Leftrightarrow b \cdot p \leq p \cdot c$

$$
\begin{aligned}
& \Leftrightarrow b \cdot p=b \cdot p \cdot c \\
& \Leftrightarrow b \cdot p \cdot \neg c=0
\end{aligned}
$$

Can we do the same for concurrent procrams?

OUtline

Recent developments in CKA
I. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
V. Ongoing and future work

OUtline

Recent developments in CKA
l. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
V. Oncoing and future work

BI-Kleene Alcebra

$$
e, f::=1|0| x|e \cdot f| e \| f|e+f| e^{\star} \mid e^{!}
$$

Definition

A Bi-Kleene alcesra is a structure $\langle A, 0,1, \cdot, \|,+, \star,!\rangle$ such that:
$\langle A, 0,1, \cdot,+, \star\rangle$ is a $K A$
$\langle A, 0,1, \|,+,!\rangle$ is a commutative $K A$.

bI-KıeEne Alcebra

$$
e, f::=1|0| x|e \cdot f| e \| f|e+f| e^{\star} \mid e^{!}
$$

Definition

A Bi-Kleene alcesra is a structure $\langle A, 0,1, \cdot, \|,+, \star,!\rangle$ such that:
$\langle A, 0,1, \cdot,+, \star\rangle$ is a $K A$
$\langle A, 0,1, \|,+,!\rangle$ is a commutative $K A$.

What is the free Bi-KA?

Pomsets: concurrent traces

Pomsets: concurrent traces

A is some alphabet of actions.

Pomsets: concurrent traces

A is some alphabet of actions.

Up-to isomorphism \equiv.

Pomsets: concurrent traces

A is some alphabet of actions.

Up-to isomorphism \equiv.

COMBINING POMSETS

$a=$

$1=$

$P_{2}=$

COMBINING POMSETS

COMBINING POMSETS

Completeness of biKA

$$
\begin{aligned}
\llbracket 1 \rrbracket & :=\{1\} & \llbracket 0 \rrbracket:=\emptyset \\
\llbracket x \rrbracket & :=\{x\} & \llbracket e+f \rrbracket:=\llbracket e \rrbracket \cup \llbracket f \rrbracket \\
\llbracket e \cdot f \rrbracket & :=\{P ; Q \mid P \in \llbracket e \rrbracket, Q \in \llbracket f \rrbracket\} & \llbracket e \| f \rrbracket:=\{P \| Q \mid P \in \llbracket e \rrbracket, Q \in \llbracket f \rrbracket\} \\
\llbracket e^{\star} \rrbracket & :=\left\{P_{1} ; \cdots ; P_{n} \mid n \in \mathbb{N}, P_{i} \in \llbracket e \rrbracket\right\} & \llbracket e^{\prime} \rrbracket:=\left\{P_{1}\|\cdots\| P_{n} \mid n \in \mathbb{N}, P_{i} \in \llbracket e \rrbracket\right\}
\end{aligned}
$$

Theorem
biKA $+e=f \Leftrightarrow \llbracket e \rrbracket \equiv \llbracket f \rrbracket$.

Laurence \uparrow Struth, "Completeness Theorems for Bi-Kleene AkeBras and Series-Parallel Ra-
tional Pomset Lancuaces", RAMiCS ' 14

Concurrent Kleene Algebra

Interchance law

$$
(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d)
$$

INTERLEAVINGS AND SUBSUMPTION

Interchance law

$$
(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d) .
$$

$P \sqsubseteq Q$ when there is a homomorphism from Q to P, i.e. a Bijective map
$\varphi: E_{Q} \rightarrow E_{P}$ such that $\lambda_{P} \circ \varphi=\lambda_{Q}$ and $\varphi\left(\leq_{Q}\right) \subseteq \leq_{P}$.
$L \sqsubseteq:=\{P \mid \exists Q \in L: P \sqsubseteq Q\}$.

Completeness and decidability of CKA

Theorem
The problem of testing whether two given expressions e, f denote the same closed lancuace is ExpSpace-complete.
B., Pous, $\stackrel{\approx}{\boldsymbol{T}}$ Struth, "On Decidasility of Concurrent Kleene Algebra", CONCUR it

Theorem

$$
C K A \vdash e=f \Leftrightarrow \llbracket e \rrbracket \sqsubseteq=\llbracket f \rrbracket \sqsubseteq .
$$

Kappé, B., Silva, $\frac{1}{\boldsymbol{T}}$ Zanasi, "Concurrent Kleene AlgeBra: Free Model and Completeness", ESOP '18

OUtline

Recent developments in CKA
I. Concurrent Kleene Algebra
(z) II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
V. Oncoing and future work

CKAT

Slogan

A KAT is a KA with a Boolean sub-algebra.
A CKAT is a CKA with a Boolean sub-alGebra.

CKAT

A KAT is a KA with a Boolean sub-algebra.
A CKAT is a CKA with a Boolean sub-alGebra.

$$
\begin{aligned}
t \cdot p \cdot \neg t & \leq p \|(t \cdot \neg t) \\
& =p \|(t \wedge \neg t) \\
& =p \| \perp \\
& =p \| 0 \\
& =0
\end{aligned}
$$

(CKA axioms)
$(\wedge=\cdot)$
(Boolean axioms) ($\perp=0$)
(CKA axioms)

CKAT: DOOMED!

Slogan

A KAT is a KA with a Boolean SuB-akeBra.
A CKAT is a CKA with a BOOlean sub-algebra.

$$
\begin{aligned}
t \cdot p \cdot \neg t & \leq p \|(t \cdot \neg t) \\
& =p \|(t \wedge \neg t) \\
& =p \| \perp \\
& =p \| 0 \\
& =0
\end{aligned}
$$

(CKA axioms)

$$
(\wedge=\cdot)
$$

(Boolean axioms)
($\perp=0$)
(CKA axioms)
\leftrightarrow For every procram and every assertion, the triple $\{t\} p\{t\}$ holds.
\leftrightarrow Every test is invariant under every procram.

Who's to blame?

$$
\begin{array}{rlr}
t \cdot p \cdot \neg t & \leq p \|(t \cdot \neg t) & \text { (CKA axioms) } \\
& =p \|(t \wedge \neg t) & (\wedge=\cdot) \\
& =p \| \perp & \text { (Boolean axioms) } \\
& =p \| 0=0 & (\perp=0+\text { CKA axioms) }
\end{array}
$$

Who's to blame?

$$
\begin{array}{rlr}
t \cdot p \cdot \neg t & \leq p \|(t \cdot \neg t) & \text { (CKA axioms) } \\
& =p \|(t \wedge \neg t) & \text { (Boolean axioms) } \\
& =p \| \perp & (\perp=0+\text { CKA axioms) } \\
& =p \| 0=0 & \text { (} 1 \text {) }
\end{array}
$$

$$
a \wedge b=a \cdot b
$$

"If we observe a, and then OBserve b without any action in Between, then Both OBservations are made on the same state. Therefore that state simultaneously satisfies a and b."

Who's to blame?

$$
\left.\begin{array}{rlr}
t \cdot p \cdot \neg t & \leq p \|(t \cdot \neg t) & \text { (CKA axioms) } \\
& =p \|(t \wedge \neg t) & \text { (Boolean axioms) } \\
& =p \| \perp & (\perp=0+\text { CK axioms) } \\
& =p \| 0=0 & (\Lambda
\end{array}\right)
$$

$$
a \Delta b=a \cdot b
$$

"If we observe a, and then OBserve b without any action in Between, then Both Observations are made on the same state. Therefore that state simultaneously satisfies a and b."

$$
a \wedge b \leq a \cdot b
$$

CKAO - Syntax

$$
\begin{gathered}
e, f \in E_{A \cup B_{T}}::=0|1| a \in A\left|t \in B_{T}\right| e \cdot f|e \| f| e+f \mid e^{\star} \\
t, t_{1}, t_{2} \in B_{T}::=T|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
\end{gathered}
$$

The axioms of CKAO
The axioms of CKA.
For tests, the axioms of Boolean algebra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2} \leq t_{1} \cdot t_{2} \quad \perp=0
$$

CKAO - MODEL

INTERLUDE: (C)KA wTTH HYPotheses

H : set of hypotheses $e \leq f$ over some fixed alphabet A.
extra structure on the alphabet (e.c. $\alpha \wedge \beta=\beta \wedge \alpha$);
extra structure on traces (e.c. $\alpha \leq \alpha \cdot \alpha$)
other domain-specific assumptions.

Theorem

$$
C K A+H \vdash e=f \Rightarrow \llbracket e \rrbracket \downarrow^{H}=\llbracket f \rrbracket \downarrow^{H}
$$

Doumane, KuperBerG, Pous, $\#$ Pradic, "Kleene Alcebra with Hypotheses", FoSSaCS '19 Kappé, B., Silva, Wagemaker, $\frac{1}{\bar{T}}$ Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS '20

OUtline

Recent developments in CKA
I. Concurrent Kleene Algebra
II. CKA with OBservations
resill. Partially observable CKA
IV. CKA with Boxes
V. Ongoing and future work

LITMUS TEST: SEQUENTIAL CONSISTENCY

$$
\begin{array}{rlr}
\{\mathrm{r} 0=0 \text { \&\& } \mathrm{r} 1=0\} & \\
\mathrm{x}:=1 \\
\mathrm{r} 0:=\mathrm{y}
\end{array} \left\lvert\, \begin{array}{ll}
\mathrm{y}:=1 \\
\mathrm{r} 1:=\mathrm{x} & \text { Ingredients: } \\
\{!(\mathrm{r} 0 & =1| | \mathrm{r} 1==1)\}
\end{array}\right.
$$

What kind of observations do we need?
First attempt: BOolean alcebra
Atomic OBservations: $\mathrm{V}_{\mathrm{AR}}==\mathrm{V}_{\mathrm{AL}}$ e.c. $r_{0}==1$

What kind of observations do we need?
First attempt: Boolean algebra
Atomic observations: $\mathrm{V}_{\text {AR }}==V_{\text {AL }}$
Boolean formula: set of memory states $V_{A R} \rightarrow V_{A L}$
e.G. $r_{0}==1$
e.c.

r_{0}	1
r_{1}	0

What kind OF OBSERVATIONS DO WE NEED?
First attempt: BOOlean algesra
Atomic observations: $V_{A R}==V_{A L}$
e.c. $r_{0}==1$

Boolean formula: set of memory states $V_{A R} \rightarrow V_{A L}$
e..

r_{0}	1
r_{1}	0

Assicnments: $\sum_{s \in S t a t e} s \cdot(v \leftarrow n) \cdot s[v \mapsto n]$, i.e.

$$
\llbracket x \leftarrow 1 \rrbracket:=\left\{\begin{array}{|l|l}
\hline x & 0 \\
y & 0
\end{array} \rightarrow[x \leftarrow 1] \rightarrow \begin{array}{|l|l}
\hline x & 1 \\
y & 0
\end{array},\left[\begin{array}{|l|l}
x & 0 \\
y & 1 \\
\hline
\end{array} \rightarrow[x \leftarrow 1] \rightarrow \begin{array}{|l|l}
\hline x & 1 \\
y & 1 \\
\hline
\end{array}\right\}\right.
$$

What kind Of ObSERvations dO We need?
First attempt: BOOlean algebra
Atomic observations: $\mathrm{V}_{\mathrm{AR}}==\mathrm{V}_{\mathrm{AL}}$
e.c. $r_{0}==1$

Boolean formula: set of memory states $V_{A R} \rightarrow V_{A L}$
e.c.

r_{0}	1
r_{1}	0

Assignments: $\sum_{s \in S t a t e} s \cdot(v \leftarrow n) \cdot s[v \mapsto n]$, i.e.

$$
\llbracket x \leftarrow 1 \rrbracket:=\left\{\begin{array}{lll}
\hline x & 0 \\
y & 0
\end{array} \rightarrow[x \leftarrow 1] \rightarrow \begin{array}{|l|l}
x & 1 \\
y & 0
\end{array}, \quad, \begin{array}{l|l|}
\hline x & 0 \\
y & 1 \\
\hline
\end{array} \rightarrow[x \leftarrow 1] \rightarrow \begin{array}{|l|l}
x & 1 \\
y & 1 \\
\hline
\end{array}\right\}
$$

Problem: parallel composition?

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline x & 0 \\
y & 0
\end{array} \rightarrow\left[\begin{array}{ll}
x & 1
\end{array}\right] \rightarrow \begin{array}{|l|l|}
\hline x & 1 \\
y & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline x & 0 \\
y & 0
\end{array} \rightarrow[y \leftarrow 1] \rightarrow \begin{array}{|c|c|}
x & 0 \\
y & 1 \\
\hline
\end{array}
\end{aligned}
$$

Algebra of partial observations

Idea: Instead of memory state $V_{A R} \rightarrow V_{A L}$, consider partial functions $V_{A R} \rightarrow V_{A L}$.
PCDL of OBservations

$$
t, t_{1}, t_{2} \in O_{T}::=T|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \bar{t}
$$

Same axioms as $B A$ regarding \vee, \wedge, T, \perp, plus:
$p \leq \bar{q} \Leftrightarrow p \wedge q=\perp$
$\overline{v=n}=\bigvee_{m \neq n} v=m$

CAUSALITY VS COMPOSITIONALITY

CAUSALITY VS COMPOSITIIONALITY

Solution: we need to explicitly close the system.

$$
\llbracket e \rrbracket \rightarrow \llbracket e \rrbracket \cap \text { CausalPomsets. }
$$

CAUSALITY VS COMPOSITIONALITY

Solution: we need to explicitly close the system.

$$
\llbracket e \rrbracket \rightarrow \llbracket e \rrbracket \cap \text { CausalPomsets. }
$$

Litmus test:

$$
t:=\left(r_{0}=0 \wedge r_{1}=0\right) \cdot\left(\left(x \leftarrow 1 \cdot r_{0} \leftarrow y\right) \|\left(y \leftarrow 1 \cdot r_{1} \leftarrow x\right)\right) \cdot \overline{\left(r_{0}=1 \vee r_{1} \vee 1\right)}
$$

$$
\llbracket t \rrbracket \cap \text { CausalPomsets }=\emptyset
$$

OUtline

Recent developments in CKA
I. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA

IE IV. CKA with Boxes
V. Oncoing and future work

Mutual exclusion

print (counter) ;

Mutual exclusion

print (counter) ;

POMSETS WITH BOXES

POMSETS WITH BOXES

SUBSUMPTION WITH BOXES

$P \sqsubseteq Q$ when there is a homomorphism from Q to P, i.e. a Bijective map $\varphi: E_{Q} \rightarrow E_{P}$ such that
n) $\lambda_{P} \circ \varphi=\lambda_{Q}$
2) $\varphi\left(\leq_{Q}\right) \subseteq \leq_{P}$

SUBSUMPTION WITH BOXES

$P \sqsubseteq Q$ when there is a homomorphism from Q to P, i.e. a Bijective map $\varphi: E_{Q} \rightarrow E_{P}$ such that
n) $\lambda_{P} \circ \varphi=\lambda_{Q}$
2) $\varphi\left(\leq_{Q}\right) \subseteq \leq_{P}$
3) $\varphi\left(\mathcal{B}_{P}\right) \subseteq \mathcal{B}_{Q}$

Axiomatisation

$$
\begin{aligned}
{[[e]] } & =[e] \\
{[1] } & =1 \\
{[0] } & =0 \\
{[e+f] } & =[e]+[f] \\
{[e] } & \leq e
\end{aligned}
$$

Claim

$$
\llbracket e \rrbracket=\llbracket f \rrbracket \Leftrightarrow C K A+B \vdash e=f .
$$

Mutual exclusion (II)

print (counter)	
atomic\{	atomic\{
x :=counter;	y :=counter
x : $=\mathrm{x}+1$	$\mathrm{y}:=\mathrm{y}+$
counter:=x;	counter:=y;
	\}
print (counter) ;	

Breaking mutual exclusion \leftrightarrow admitting an execution with the following "pattern":

Pomset logic

$$
\varphi, \psi::=\perp|a| \varphi \vee \psi|\varphi \wedge \psi| \varphi>\psi|\varphi \star \psi|[\varphi] \mid(\varphi)
$$

$P \models \varphi>\psi$ iff $\exists P_{1}, P_{2}$ such that $P \sqsupseteq P_{1} \cdot P_{2}$ and $P_{1} \models \varphi$ and $P_{2} \models \psi$
$P \models \varphi \star \psi$ iff $\exists P_{1}, P_{2}$ such that $P \sqsupseteq P_{1} \| P_{2}$ and $P_{1} \models \varphi$ and $P_{2}=\psi$
$P \models[\varphi]$ iff $\exists Q$ such that $P \sqsupseteq[Q]$ and $Q \models \varphi$
$P \models(\varphi)$ iff $\exists P^{\prime}, Q$ such that $P \sqsupseteq P^{\prime}$ and $P^{\prime} \boxplus Q$ and $Q \models \varphi$.

$$
P \sqsupseteq Q \Leftrightarrow \forall \varphi,(P \models \varphi \Rightarrow Q \models \varphi) .
$$

Mutual exclusion (III)

Breaking mutual exclusion \leftrightarrow admitting an execution with the following "pattern":

$$
\leftrightarrow P \models\left(\left(\rightharpoonup_{0} \star \star \rightharpoonup_{y}\right)>\left(\Delta_{x} \star \Delta_{y}\right)\right)
$$

OUtline

Recent developments in CKA
I. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
les V. Oncoing and future work

AlgEBRAS WITH HYPOTHESES

 FOSSaCS '19.

AlGEBRAS WITH HYPOTHESES

Doumane, KuperBerg, Pous, $\stackrel{F}{F}$ Pradic, "Kleene AlgeBra with Hypotheses", FoSSaCS '19.
Kappé, B., Silva, Wacemaker, ¿Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS 20.

Algebras with hypotheses

Doumane, KuperBerg, Pous, $\xlongequal[F]{c}$ Pradic, "Kleene AlgeBra with Hypotheses", FOSSaCS 'I9.
Kappé, B., Silva, Wagemaker, $\frac{\perp}{\bar{T}}$ Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS 20.
CKA with Boxes and hypotheses?

Algebras with hypotheses

Doumane, KuperBerg, Pous, $\underset{F}{ }$ Pradic, "Kleene Algebra with Hypotheses", FOSSaCS 'I9.
Kappé, B., Silva, Wagemaker, $\stackrel{\rightharpoonup}{T}$ Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS 20.
CKA with Boxes and hypotheses?

All proofs had to Be re-done from scratch.

Algebras with hypotheses

Doumane, KuperBerg, Pous, $\underset{\tau}{\tau}$ Pradic, "Kleene Algebra with Hypotheses", FOSSaCS 'I9.
Kappé, B., Silva, Wagemaker, $\stackrel{\rightharpoonup}{T}$ Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS 20.
CKA with Boxes and hypotheses?

All proofs had to Be re-done from scratch.
Can we do Better?

LOGICS OF BEHAVIOUR

Traditional approaches to procram locic rely on states e.g. Hennessy-Milner Locic, (Propositional) Dynamic Locic...

LOGICS OF BEHAVIOUR

Traditional approaches to procram logic rely on states e.c. Hennessy-Milner Locic, (Propositional) Dynamic Logic.

Pomset locic relies on an abstract notion of "Behaviour" instead.

LOGICS OF BEHAVIOUR

Traditional approaches to procram locic rely on states e.c. Hennessy-Milner Locic, (Propositional) Dynamic Locic.

Pomset locic relies on an abstract notion of "Behaviour" instead.

What kinds of properties of Behaviours are interesting and/or tractaBle?

EXTENSIONS OF THE MODEL

Merging Boxes: $[e \cdot[f] \cdot g]=[e \cdot f \cdot g]$.

EXTENSIONS OF THE MODEL

Meraing Boxes: $[e \cdot[f] \cdot g]=[e \cdot f \cdot g]$.

Beyond partial memory states: ArBitrary coherence relation Between atomic OBservations.

$$
v=1 \asymp v=0
$$

EXTENSIONS OF THE MODEL

Mercing Boxes: $[e \cdot[f] \cdot g]=[e \cdot f \cdot g]$.

Beyond partial memory states: ArBitrary coherence relation Between atomic OBservations.

$$
v=1 \asymp v=0
$$

Add data: Nominal algebras.

That's all folks!

Thank you!

See more at:
http://paul.brunet-zamansky.fr

OUtline

Recent developments in CKA
I. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
V. Ongoing and future work

