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Kleene algebra: the algebra of regular expressions

e, f ∈ EA ::= 0 | 1 | a | e · f | e + f | e?

J K : EA → P (A?)

example:

Ja · ((a+ b) · a)?K =

{
words of odd length over the

alphabet {a, b} such that every

other letter is an a

}
= {a, aaa, aba, aaaaa, abaaa, aaaba, ababa, ...}

Interpretation: regular languages

Paul Brunet 3/39



Kleene algebra: the algebra of regular expressions

e + e=e e + f=f + e e + (f + g)=(e + f ) + g
e + 0=0 e · 1=e = 1 · e e · (f · g)=(e · f ) · g
e · 0=0 = 0 · e e · (f + g)=e · f + e · g (e + f ) · g=e · g + f · g

e? = 1 + e · e? e · f ≤ f ⇒ e? · f ≤ f

The axioms of KA

KA ` e = f ⇔ JeK = Jf K.
Theorem

Kozen, “A completeness theorem for Kleene algebras and the algebra of regular events”,

LiCS ’90
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KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

Syntax

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

guarded strings: alternating sequences of states ∈ 2T & actions ∈ A.

α1 1
α2 0
α3 1
α4 1

a

α1 1
α2 0
α3 0
α4 1

b

α1 0
α2 0
α3 1
α4 0

c

α1 1
α2 1
α3 1
α4 0

Interpretation: languages of guarded strings
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KAT: the algebra of imperative programs
The axioms of KAT:

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

KAT ` e = f ⇔ JeK = Jf K.
Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Theorem

Subsumes Hoare logic: {b} p {c}⇔ b · p ≤ p · c
⇔ b · p = b · p · c
⇔ b · p · ¬c = 0

Can we do the same for concurrent programs?
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bi-Kleene Algebra

e, f ::= 1 | 0 | x | e · f | e ‖ f | e + f | e? | e!

A bi-Kleene algebra is a structure 〈A, 0, 1, ·, ‖,+, ?, !〉 such that:

〈A, 0, 1, ·,+, ?〉 is a KA

〈A, 0, 1, ‖,+, !〉 is a commutative KA.

Definition

What is the free bi-KA?

Paul Brunet 9/39
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Pomsets: concurrent traces

A is some alphabet of actions.

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

Up-to isomorphism ≡.
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Combining pomsets

a = a 1 = P1 =
a b

a

P2 =

c

b

P1;P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b
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Completeness of biKA

J1K := {1} J0K := ∅
JxK := {x} Je + f K := JeK ∪ Jf K

Je · f K := {P;Q | P ∈ JeK, Q ∈ Jf K} Je ‖ f K := {P ‖ Q | P ∈ JeK, Q ∈ Jf K}
Je?K := {P1; · · · ;Pn | n ∈ N, Pi ∈ JeK} Je!K := {P1 ‖ · · · ‖ Pn | n ∈ N, Pi ∈ JeK}

biKA ` e = f ⇔ JeK ≡ Jf K.

Theorem

Laurence & Struth, “Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Ra-

tional Pomset Languages”, RAMiCS ’14

Paul Brunet 12/39



Concurrent Kleene Algebra

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d).

Interchange law

A concurrent Kleene algebra is a weak bi-Kleene algebra 〈A, 0, 1, ·, ‖,+, ?〉
satisfying the interchange law.

CKA

No parallel iteration

Paul Brunet 13/39



Interleavings and subsumption

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d).

Interchange law

a

b

c

d

a

b

c

d

v

P v Q when there is a homomorphism from Q to P , i.e. a bijective map

ϕ : EQ → EP such that λP ◦ ϕ = λQ and ϕ (≤Q) ⊆≤P .

Lv := {P | ∃Q ∈ L : P v Q } .

Paul Brunet 14/39



Completeness and decidability of CKA

The problem of testing whether two given expressions e, f denote the

same closed language is ExpSpace-complete.

Theorem

B., Pous, & Struth, “On Decidability of Concurrent Kleene Algebra”, CONCUR ’17

CKA ` e = f ⇔ JeKv = Jf Kv.
Theorem

Kappé, B., Silva, & Zanasi, “Concurrent Kleene Algebra: Free Model and Completeness”, ESOP

’18

Paul Brunet 15/39



Outline

Recent developments in CKA

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Ongoing and future work

Paul Brunet 16/39



CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 (⊥ = 0)
= 0 (CKA axioms)

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 17/39
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Who’s to blame?

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 = 0 (⊥ = 0 + CKA axioms)

a ∧ b = a · b
“If we observe a, and then observe b without any action in between, then

both observations are made on the same state. Therefore that state

simultaneously satisfies a and b.”

a ∧ b ≤ a · b

Paul Brunet 18/39
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CKAO - Syntax

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e ‖ f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of CKA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 ≤ t1 · t2 ⊥ = 0

The axioms of CKAO

Paul Brunet 19/39



CKAO - Model

α1 1
α2 1
α3 0

α1 1
α2 1
α3 0

a

b

α1 0
α2 0
α3 0

c
α1 0
α2 0
α3 1

α1 1
α2 0
α3 0

d
α1 1
α2 1
α3 0

b

a

α1 0
α2 0
α3 0

c
α1 0
α2 0
α3 1

α1 1
α2 0
α3 0

d

v

CKAO ` e = f ⇔ JeK↓ = Jf K↓.
Theorem

Paul Brunet 20/39



Interlude: (C)KA with hypotheses

H : set of hypotheses e ≤ f over some fixed alphabet A.

extra structure on the alphabet (e.g. α ∧ β = β ∧ α);
extra structure on traces (e.g. α ≤ α · α)
other domain-specific assumptions.

CKA+ H ` e = f ⇒ JeK↓H = Jf K↓H
Theorem

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”, FoSSaCS ’19

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with Observations:

from Hypotheses to Completeness”, FoSSaCS ’20

Paul Brunet 21/39
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Litmus test: sequential consistency

{ r0 == 0 && r1 == 0 }

x := 1 y := 1
r0 := y r1 := x

{ !( r0 == 1 || r1 == 1 ) }

Ingredients:

Assignments x ← 1
Observations r0 = 0

Paul Brunet 23/39



What kind of observations do we need?
First attempt: boolean algebra

Atomic observations: VAR == VAL e.g. r0 == 1

Boolean formula: set of memory states VAR→ VAL e.g.
r0 1
r1 0

Assignments:
∑

s∈State s · (v ← n) · s[v 7→ n], i.e.

Jx ← 1K :=
{

x 0
y 0

x 1
y 0[x ← 1] , x 0

y 1
x 1
y 1[x ← 1]

}

x 0
y 0

x 1
y 0[x ← 1]

x 0
y 0

x 0
y 1[y ← 1]

Problem: parallel composition?

Paul Brunet 24/39
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Algebra of partial observations

Idea: Instead of memory state VAR→ VAL, consider partial functions VAR ⇀ VAL.

t, t1, t2 ∈ OT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | t

Same axioms as BA regarding ∨,∧,>,⊥, plus:

p ≤ q ⇔ p ∧ q = ⊥
v = n =

∨
m 6=n v = m

PCDL of observations

Paul Brunet 25/39



Causality vs compositionality

x 0
y 0 x ← 1

x 1
y 0

x 0
y 0 y ← 1 x 0

y 1

x ← 0

Solution: we need to explicitly close the system.

JeK → JeK ∩ CausalPomsets.

Litmus test:

t := (r0 = 0 ∧ r1 = 0) · ((x ← 1 · r0 ← y) ‖ (y ← 1 · r1 ← x)) · (r0 = 1 ∨ r1 ∨ 1)

JtK ∩ CausalPomsets = ∅
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Mutual exclusion

print(counter);

atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }

print(counter);

Ò

x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò
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Pomsets with boxes

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP

,BP

〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

set of boxes
⊆ P 6=∅ (EP)
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Subsumption with boxes

1 : a

2 : a

3 : b

4 : b

5 : c 6 : c

7 : d
8 : d

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

v

P v Q when there is a homomorphism from Q to P , i.e. a bijective map

ϕ : EQ → EP such that

1) λP ◦ ϕ = λQ

2) ϕ (≤Q) ⊆≤P

3) ϕ (BP) ⊆ BQ
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Axiomatisation

[[e]] = [e]

[1] = 1
[0] = 0

[e + f ] = [e] + [f ]

[e] ≤ e

JeK = Jf K⇔ CKA+ B ` e = f .

Claim
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Mutual exclusion (II)

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò

x Ix bx

y Iy by

Ò

Breaking mutual exclusion ↔ admitting an execution with the

following “pattern”: x bx

y by
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Pomset logic

ϕ,ψ ::= ⊥ | a | ϕ ∨ ψ | ϕ ∧ ψ | ϕIψ | ϕ?ψ | [ϕ] | LϕM

P |= ϕIψ iff ∃P1,P2 such that P w P1 · P2 and P1 |= ϕ and P2 |= ψ

P |= ϕ?ψ iff ∃P1,P2 such that P w P1 ‖ P2 and P1 |= ϕ and P2 |= ψ

P |= [ϕ] iff ∃Q such that P w [Q] and Q |= ϕ

P |= LϕM iff ∃P ′,Q such that P w P ′ and P ′ E Q and Q |= ϕ.

P w Q ⇔ ∀ϕ, (P |= ϕ⇒ Q |= ϕ) .

Theorem

Paul Brunet 33/39



Mutual exclusion (III)

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò

x Ix bx

y Iy by

Ò

Breaking mutual exclusion ↔ admitting an execution with the

following “pattern”: x bx

y by

↔ P |= L( x ? y )I (bx ?by )M

Paul Brunet 34/39
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Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?
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Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What kinds of properties of behaviours are interesting and/or tractable?

Paul Brunet 37/39



Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What kinds of properties of behaviours are interesting and/or tractable?

Paul Brunet 37/39



Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What kinds of properties of behaviours are interesting and/or tractable?

Paul Brunet 37/39



Extensions of the model

Merging boxes: [e · [f ] · g ] = [e · f · g ].

≤

Beyond partial memory states: Arbitrary coherence relation between

atomic observations.

v = 1 � v = 0

Add data: Nominal algebras.
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That’s all folks!

Thank you!

See more at:

http://paul.brunet-zamansky.fr
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