
Recent developments
in

concurrent Kleene algebra

Séminaire PPS - Paris
Juin 2020

Paul Brunet
University College London

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/41

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/41

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/41

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/41

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/41

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/41

Concurrent Kleene Algebra

2009

CKA is introduced.

2011

Models of CKA are introduced,

and the relationship with sepa-

ration logic is established.

2014

First completeness theorem

(without the exchange law),

CKA with tests is intro-

duced.

2016

Second paper on CKAT, correcting some mistakes from the first one.

2017

Decidability

of CKA.

2018

Completeness

of CKA.

2020

CKA with observations,

partially observable CKA,

CKA with boxes.

Paul Brunet 2/41

Kleene algebra: the algebra of regular expressions

e, f ∈ EA ::= 0 | 1 | a | e · f | e + f | e?

J K : EA → P (A?)

e + e=e e + f=f + e e + (f + g)=(e + f) + g
e + 0=0 e · 1=e = 1 · e e · (f · g)=(e · f) · g
e · 0=0 = 0 · e e · (f + g)=e · f + e · g (e + f) · g=e · g + f · g

e? = 1 + e · e? e · f ≤ f ⇒ e? · f ≤ f

The axioms of KA

KA ` e = f ⇔ JeK = Jf K.
Theorem

Kozen, “A completeness theorem for Kleene algebras and the algebra of regular events”,

LiCS ’90

Paul Brunet 3/41

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

The axioms of KAT

Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Paul Brunet 4/41

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

abort execution

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

The axioms of KAT

Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Paul Brunet 4/41

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

abort execution

skip

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

The axioms of KAT

Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Paul Brunet 4/41

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

abort execution

skip

atomic action atomic test

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

The axioms of KAT

Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Paul Brunet 4/41

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

abort execution

skip

atomic action atomic test

sequential composition

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

The axioms of KAT

Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Paul Brunet 4/41

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

abort execution

skip

atomic action atomic test

sequential composition

non-deterministic choice

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

The axioms of KAT

Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Paul Brunet 4/41

KAT: the algebra of imperative programs

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e + f | e?

abort execution

skip

atomic action atomic test

sequential composition

non-deterministic choice

non-deterministic loop

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of KA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

The axioms of KAT

Kozen & Smith, “Kleene algebra with tests: Completeness and decidability”, CSL ’96

Paul Brunet 4/41

KAT
Free algebra: languages over Guarded Strings, i.e. 2T · (A · 2T)? .

α1 1
α2 0
α3 1
α4 1

α1 1
α2 0
α3 0
α4 1

α1 0
α2 0
α3 1
α4 0

α1 1
α2 1
α3 1
α4 0

a b 1

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

Subsumes Hoare logic:

{b} p {c} ⇔ b · p ≤ p · c
⇔ b · p = b · p · c
⇔ b · p · ¬c = 0

Can we do the same for concurrent programs?

Paul Brunet 5/41

KAT
Free algebra: languages over Guarded Strings, i.e. 2T · (A · 2T)? .

α1 1
α2 0
α3 1
α4 1

α1 1
α2 0
α3 0
α4 1

α1 0
α2 0
α3 1
α4 0

α1 1
α2 1
α3 1
α4 0

a b 1

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

Subsumes Hoare logic:

{b} p {c} ⇔ b · p ≤ p · c
⇔ b · p = b · p · c
⇔ b · p · ¬c = 0

Can we do the same for concurrent programs?

Paul Brunet 5/41

KAT
Free algebra: languages over Guarded Strings, i.e. 2T · (A · 2T)? .

α1 1
α2 0
α3 1
α4 1

α1 1
α2 0
α3 0
α4 1

α1 0
α2 0
α3 1
α4 0

α1 1
α2 1
α3 1
α4 0

a b 1

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

Subsumes Hoare logic:

{b} p {c} ⇔ b · p ≤ p · c
⇔ b · p = b · p · c
⇔ b · p · ¬c = 0

Can we do the same for concurrent programs?

Paul Brunet 5/41

KAT
Free algebra: languages over Guarded Strings, i.e. 2T · (A · 2T)? .

α1 1
α2 0
α3 1
α4 1

α1 1
α2 0
α3 0
α4 1

α1 0
α2 0
α3 1
α4 0

α1 1
α2 1
α3 1
α4 0

a b 1

Encodes a simple While language:

if b then p else q 7→ b · p + ¬b · q while b do p 7→ (b · p)? · ¬b

Subsumes Hoare logic:

{b} p {c} ⇔ b · p ≤ p · c
⇔ b · p = b · p · c
⇔ b · p · ¬c = 0

Can we do the same for concurrent programs?
Paul Brunet 5/41

Outline

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Conclusions

Paul Brunet 6/41

Outline

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Conclusions

Paul Brunet 7/41

bi-Kleene Algebra

e, f ::= 1 | 0 | x | e · f | e ‖ f | e + f | e? | e!

A bi-Kleene algebra is a structure 〈A, 0, 1, ·, ‖,+, ?, !〉 such that:

〈A, 0, 1, ·,+, ?〉 is a KA

〈A, 0, 1, ‖,+, !〉 is a commutative KA.

Definition

What is the free bi-KA?

Paul Brunet 8/41

bi-Kleene Algebra

e, f ::= 1 | 0 | x | e · f | e ‖ f | e + f | e? | e!

A bi-Kleene algebra is a structure 〈A, 0, 1, ·, ‖,+, ?, !〉 such that:

〈A, 0, 1, ·,+, ?〉 is a KA

〈A, 0, 1, ‖,+, !〉 is a commutative KA.

Definition

What is the free bi-KA?

Paul Brunet 8/41

Pomsets: concurrent traces

A is some alphabet of actions.

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

Up-to isomorphism ≡.

Paul Brunet 9/41

Pomsets: concurrent traces
A is some alphabet of actions.

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

Up-to isomorphism ≡.

Paul Brunet 9/41

Pomsets: concurrent traces
A is some alphabet of actions.

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

Up-to isomorphism ≡.

Paul Brunet 9/41

Pomsets: concurrent traces
A is some alphabet of actions.

a

a

b

b

c

c

d d

P = 〈EP ,6P , λP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

Up-to isomorphism ≡.

Paul Brunet 9/41

Combining pomsets

a = a 1 = P1 =
a b

a

P2 =

c

b

P1;P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b

Paul Brunet 10/41

Combining pomsets

a = a 1 = P1 =
a b

a

P2 =

c

b

P1;P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b

Paul Brunet 10/41

Combining pomsets

a = a 1 = P1 =
a b

a

P2 =

c

b

P1;P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b

Paul Brunet 10/41

Completeness of biKA

J1K := {1} J0K := ∅
JxK := {x} Je + f K := JeK ∪ Jf K

Je · f K := {P;Q | P ∈ JeK, Q ∈ Jf K} Je ‖ f K := {P ‖ Q | P ∈ JeK, Q ∈ Jf K}
Je?K := {P1; · · · ;Pn | n ∈ N, Pi ∈ JeK} Je!K := {P1 ‖ · · · ‖ Pn | n ∈ N, Pi ∈ JeK}

biKA ` e = f ⇔ JeK ≡ Jf K.

Theorem

Laurence & Struth, “Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Ra-

tional Pomset Languages”, RAMiCS ’14

Paul Brunet 11/41

Concurrent Kleene Algebra

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d).

Interchange law

A concurrent Kleene algebra is a weak bi-Kleene algebra 〈A, 0, 1, ·, ‖,+, ?〉
satisfying the interchange law.

CKA

No parallel iteration

Paul Brunet 12/41

Interleavings and subsumption

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d).

Interchange law

a

b

c

d

a

b

c

d

v

P v Q when there is a homomorphism from Q to P , i.e. a bijective map

ϕ : EQ → EP such that λP ◦ ϕ = λQ and ϕ (≤Q) ⊆≤P .

Lv := {P | ∃Q ∈ L : P v Q } .

Paul Brunet 13/41

Completeness and decidability of CKA

The problem of testing whether two given expressions e, f denote the

same closed language is ExpSpace-complete.

Theorem

B., Pous, & Struth, “On Decidability of Concurrent Kleene Algebra”, CONCUR ’17

CKA ` e = f ⇔ JeKv = Jf Kv.
Theorem

Kappé, B., Silva, & Zanasi, “Concurrent Kleene Algebra: Free Model and Completeness”, ESOP

’18

Paul Brunet 14/41

Outline

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Conclusions

Paul Brunet 15/41

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t = (1 ‖ t) · (p ‖ 1) · ¬t
≤ ((1 · p) ‖ (t · 1)) · ¬t
= (p ‖ t) · (1 ‖ ¬t)
≤ (p · 1) ‖ (t · ¬t)
= p ‖ (t ∧ ¬t)
= p ‖ ⊥ = p ‖ 0 = 0

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 16/41

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t

= (1 ‖ t) · (p ‖ 1) · ¬t
≤ ((1 · p) ‖ (t · 1)) · ¬t
= (p ‖ t) · (1 ‖ ¬t)
≤ (p · 1) ‖ (t · ¬t)
= p ‖ (t ∧ ¬t)
= p ‖ ⊥ = p ‖ 0 = 0

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 16/41

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t = (1 ‖ t) · (p ‖ 1) · ¬t

≤ ((1 · p) ‖ (t · 1)) · ¬t
= (p ‖ t) · (1 ‖ ¬t)
≤ (p · 1) ‖ (t · ¬t)
= p ‖ (t ∧ ¬t)
= p ‖ ⊥ = p ‖ 0 = 0

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 16/41

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t = (1 ‖ t) · (p ‖ 1) · ¬t
≤ ((1 · p) ‖ (t · 1)) · ¬t

= (p ‖ t) · (1 ‖ ¬t)
≤ (p · 1) ‖ (t · ¬t)
= p ‖ (t ∧ ¬t)
= p ‖ ⊥ = p ‖ 0 = 0

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 16/41

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t = (1 ‖ t) · (p ‖ 1) · ¬t
≤ ((1 · p) ‖ (t · 1)) · ¬t
= (p ‖ t) · (1 ‖ ¬t)

≤ (p · 1) ‖ (t · ¬t)
= p ‖ (t ∧ ¬t)
= p ‖ ⊥ = p ‖ 0 = 0

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 16/41

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t = (1 ‖ t) · (p ‖ 1) · ¬t
≤ ((1 · p) ‖ (t · 1)) · ¬t
= (p ‖ t) · (1 ‖ ¬t)
≤ (p · 1) ‖ (t · ¬t)

= p ‖ (t ∧ ¬t)
= p ‖ ⊥ = p ‖ 0 = 0

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 16/41

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t = (1 ‖ t) · (p ‖ 1) · ¬t
≤ ((1 · p) ‖ (t · 1)) · ¬t
= (p ‖ t) · (1 ‖ ¬t)
≤ (p · 1) ‖ (t · ¬t)
= p ‖ (t ∧ ¬t)

= p ‖ ⊥ = p ‖ 0 = 0

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 16/41

CKAT

: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t = (1 ‖ t) · (p ‖ 1) · ¬t
≤ ((1 · p) ‖ (t · 1)) · ¬t
= (p ‖ t) · (1 ‖ ¬t)
≤ (p · 1) ‖ (t · ¬t)
= p ‖ (t ∧ ¬t)
= p ‖ ⊥ = p ‖ 0 = 0

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.

Paul Brunet 16/41

CKAT: DOOMED!

A KAT is a KA with a boolean sub-algebra.

A CKAT is a CKA with a boolean sub-algebra.

Slogan

t · p · ¬t = (1 ‖ t) · (p ‖ 1) · ¬t
≤ ((1 · p) ‖ (t · 1)) · ¬t
= (p ‖ t) · (1 ‖ ¬t)
≤ (p · 1) ‖ (t · ¬t)
= p ‖ (t ∧ ¬t)
= p ‖ ⊥ = p ‖ 0 = 0

↔ For every program and every assertion, the triple {t} p {t} holds.

↔ Every test is invariant under every program.
Paul Brunet 16/41

Who’s to blame?

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 = 0 (⊥ = 0 + CKA axioms)

a ∧ b = a · b
“If we observe a, and then observe b without any action in between, then

both observations are made on the same state. Therefore that state

simultaneously satisfies a and b.”

a ∧ b ≤ a · b

Paul Brunet 17/41

Who’s to blame?

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 = 0 (⊥ = 0 + CKA axioms)

a ∧ b = a · b
“If we observe a, and then observe b without any action in between, then

both observations are made on the same state. Therefore that state

simultaneously satisfies a and b.”

a ∧ b ≤ a · b

Paul Brunet 17/41

Who’s to blame?

t · p · ¬t ≤ p ‖ (t · ¬t) (CKA axioms)

= p ‖ (t ∧ ¬t) (∧ = ·)
= p ‖ ⊥ (Boolean axioms)
= p ‖ 0 = 0 (⊥ = 0 + CKA axioms)

a ∧ b = a · b
“If we observe a, and then observe b without any action in between, then

both observations are made on the same state. Therefore that state

simultaneously satisfies a and b.”

a ∧ b ≤ a · b

Paul Brunet 17/41

CKAT

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e ‖ f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of CKA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 = t1 · t2 > = 1 ⊥ = 0

The axioms of CKAT

Paul Brunet 18/41

CKAO

e, f ∈ EA∪BT
::= 0 | 1 | a ∈ A | t ∈ BT | e · f | e ‖ f | e + f | e?

t, t1, t2 ∈ BT ::= > | ⊥ | α ∈ T | t1 ∧ t2 | t1 ∨ t2 | ¬t

The axioms of CKA.

For tests, the axioms of boolean algebra.

The following “glue” axioms:

t1 ∨ t2 = t1 + t2 t1 ∧ t2 ≤ t1 · t2 ⊥ = 0

The axioms of CKAO

Paul Brunet 19/41

Interlude: (C)KA with hypotheses

EA : Expressions over A.

H : set of hypotheses e ≤ f , where e, f ∈ EA .

Contexts: C ::= ∗ | s · C | C · s | s ‖ C | C ‖ s where s, t ::= a | s · t | s ‖ t .

biKA ` e = f

CKA+ H ` e = f

e ≤ f ∈ H

CKA+ H ` e ≤ f

CKA+H

L ⊆ L↓H
e ≤ f ∈ H C [Jf K] ⊆ L↓H

C [JeK] ⊆ L↓H

H-closure

Paul Brunet 20/41

Interlude: (C)KA with hypotheses

EA : Expressions over A.

H : set of hypotheses e ≤ f , where e, f ∈ EA .

Contexts: C ::= ∗ | s · C | C · s | s ‖ C | C ‖ s where s, t ::= a | s · t | s ‖ t .

biKA ` e = f

CKA+ H ` e = f

e ≤ f ∈ H

CKA+ H ` e ≤ f

CKA+H

L ⊆ L↓H
e ≤ f ∈ H C [Jf K] ⊆ L↓H

C [JeK] ⊆ L↓H

H-closure

Paul Brunet 20/41

Interlude: (C)KA with hypotheses

EA : Expressions over A.

H : set of hypotheses e ≤ f , where e, f ∈ EA .

Contexts: C ::= ∗ | s · C | C · s | s ‖ C | C ‖ s where s, t ::= a | s · t | s ‖ t .

biKA ` e = f

CKA+ H ` e = f

e ≤ f ∈ H

CKA+ H ` e ≤ f

CKA+H

L ⊆ L↓H
e ≤ f ∈ H C [Jf K] ⊆ L↓H

C [JeK] ⊆ L↓H

H-closure

Paul Brunet 20/41

Interlude: (C)KA with hypotheses

EA : Expressions over A.

H : set of hypotheses e ≤ f , where e, f ∈ EA .

Contexts: C ::= ∗ | s · C | C · s | s ‖ C | C ‖ s where s, t ::= a | s · t | s ‖ t .

biKA ` e = f

CKA+ H ` e = f

e ≤ f ∈ H

CKA+ H ` e ≤ f

CKA+H

L ⊆ L↓H
e ≤ f ∈ H C [Jf K] ⊆ L↓H

C [JeK] ⊆ L↓H

H-closure

Paul Brunet 20/41

Interlude: (C)KA with hypotheses

EA : Expressions over A.

H : set of hypotheses e ≤ f , where e, f ∈ EA .

Contexts: C ::= ∗ | s · C | C · s | s ‖ C | C ‖ s where s, t ::= a | s · t | s ‖ t .

biKA ` e = f

CKA+ H ` e = f

e ≤ f ∈ H

CKA+ H ` e ≤ f

CKA+H

L ⊆ L↓H
e ≤ f ∈ H C [Jf K] ⊆ L↓H

C [JeK] ⊆ L↓H

H-closure

Paul Brunet 20/41

Interlude: (C)KA with hypotheses

CKA+ H ` e = f ⇒ JeK↓H = Jf K↓H
Theorem

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”, FoSSaCS ’19

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with Observations: from

Hypotheses to Completeness”, FoSSaCS ’20

Paul Brunet 21/41

Completeness of CKAO

exch = {(e ‖ f) · (g ‖ h) ≤ (e · g) ‖ (f · h) | e, f , g , h ∈ EA∪BT
};

bool = {p ≤ q | Bool ` p ≤ q };
contr = {p ∧ q ≤ p · q | p, q ∈ BT };
glue = {⊥ ≤ 0} ∪ {p ∨ q ≤ p + q | p, q ∈ BT };
obs = exch ∪ bool ∪ contr ∪ glue .

CKAO ` e = f ⇔ CKA+ obs ` e = f

CKAO as an instance of CKA+H

By the previous (generic) theorem, we get CKAO ` e = f ⇒ JeK↓obs = Jf K↓obs .

CKAO ` e = f ⇔ JeK↓obs = Jf K↓obs .
Theorem

Paul Brunet 22/41

Outline

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Conclusions

Paul Brunet 23/41

Litmus test: sequential consistency

{ r0 == 0 && r1 == 0 }

x := 1 y := 1
r0 := y r1 := x

{ !(r0 == 1 || r1 == 1) }

Ingredients:

Assignments x ← 1
Observations r0 = 0

Paul Brunet 24/41

Algebra of observations
What boolean algebra can we get out of observations of the shape r0 = 0?

Answer: sets of memory states VAR→ VAL.

What is the specification of an assignment v ← n?

Answer: ∑
s∈State

s · (v ← n) · s[v 7→ n].

Problem: how do we execute those in parallel?

x 0
y 0

x 1
y 0

x 0
y 0

x 0
y 1

x ← 1

y ← 1

Paul Brunet 25/41

Algebra of observations
What boolean algebra can we get out of observations of the shape r0 = 0?

Answer: sets of memory states VAR→ VAL.

What is the specification of an assignment v ← n?

Answer: ∑
s∈State

s · (v ← n) · s[v 7→ n].

Problem: how do we execute those in parallel?

x 0
y 0

x 1
y 0

x 0
y 0

x 0
y 1

x ← 1

y ← 1

Paul Brunet 25/41

Algebra of observations
What boolean algebra can we get out of observations of the shape r0 = 0?

Answer: sets of memory states VAR→ VAL.

What is the specification of an assignment v ← n?

Answer: ∑
s∈State

s · (v ← n) · s[v 7→ n].

Problem: how do we execute those in parallel?

x 0
y 0

x 1
y 0

x 0
y 0

x 0
y 1

x ← 1

y ← 1

Paul Brunet 25/41

Algebra of observations
What boolean algebra can we get out of observations of the shape r0 = 0?

Answer: sets of memory states VAR→ VAL.

What is the specification of an assignment v ← n?

Answer: ∑
s∈State

s · (v ← n) · s[v 7→ n].

Problem: how do we execute those in parallel?

x 0
y 0

x 1
y 0

x 0
y 0

x 0
y 1

x ← 1

y ← 1

Paul Brunet 25/41

Algebra of observations
What boolean algebra can we get out of observations of the shape r0 = 0?

Answer: sets of memory states VAR→ VAL.

What is the specification of an assignment v ← n?

Answer: ∑
s∈State

s · (v ← n) · s[v 7→ n].

Problem: how do we execute those in parallel?

x 0
y 0

x 1
y 0

x 0
y 0

x 0
y 1

x ← 1

y ← 1

Paul Brunet 25/41

Algebra of observations

Solution: Move to partial functions VAR ⇀ VAL.

Algebraically: Boolean algebra → Pseudo-complemented distributive lattice.

Same axioms as BA regarding ∨,∧,>,⊥, plus:

p ≤ q ⇔ p ∧ q = ⊥.

Paul Brunet 26/41

Algebra of observations

Solution: Move to partial functions VAR ⇀ VAL.

Algebraically: Boolean algebra → Pseudo-complemented distributive lattice.

Same axioms as BA regarding ∨,∧,>,⊥, plus:

p ≤ q ⇔ p ∧ q = ⊥.

Paul Brunet 26/41

Causality vs compositionality

x 0
y 0 x ← 1

x 1
y 0

x 0
y 0 y ← 1 x 0

y 1

x ← 0

Solution: we need to explicitly close the system.

JeK → JeK ∩ CausalPomsets.

Litmus test:

t := (r0 = 0 ∧ r1 = 0) · ((x ← 1 · r0 ← y) ‖ (y ← 1 · r1 ← x)) · (r0 = 1 ∨ r1 ∨ 1)

JtK ∩ CausalPomsets = ∅

Paul Brunet 27/41

Causality vs compositionality

x 0
y 0 x ← 1

x 1
y 0

x 0
y 0 y ← 1 x 0

y 1

x ← 0

Solution: we need to explicitly close the system.

JeK → JeK ∩ CausalPomsets.

Litmus test:

t := (r0 = 0 ∧ r1 = 0) · ((x ← 1 · r0 ← y) ‖ (y ← 1 · r1 ← x)) · (r0 = 1 ∨ r1 ∨ 1)

JtK ∩ CausalPomsets = ∅

Paul Brunet 27/41

Causality vs compositionality

x 0
y 0 x ← 1

x 1
y 0

x 0
y 0 y ← 1 x 0

y 1

x ← 0

Solution: we need to explicitly close the system.

JeK → JeK ∩ CausalPomsets.

Litmus test:

t := (r0 = 0 ∧ r1 = 0) · ((x ← 1 · r0 ← y) ‖ (y ← 1 · r1 ← x)) · (r0 = 1 ∨ r1 ∨ 1)

JtK ∩ CausalPomsets = ∅

Paul Brunet 27/41

Outline

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Conclusions

Paul Brunet 28/41

Mutual exclusion

print(counter);

atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }

print(counter);

Ò
x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 29/41

Mutual exclusion

print(counter);

atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }

print(counter);

Ò
x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 29/41

Mutual exclusion

print(counter);

atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }

print(counter);

Ò
x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 29/41

Mutual exclusion

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò
x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 29/41

Mutual exclusion

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò
x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 29/41

Mutual exclusion

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò
x Ix bx

y Iy by

Ò

Ò x Ix bx y Iy by Ò

Ò x Ix bxy Iy by Ò

Paul Brunet 29/41

Pomsets with boxes

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP

,BP

〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

set of boxes
⊆ P 6=∅ (EP)

Paul Brunet 30/41

Pomsets with boxes

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

P = 〈EP ,6P , λP ,BP〉

finite set of events

partial order
⊆ EP × EP

: EP → A
labeling function

set of boxes
⊆ P 6=∅ (EP)

Paul Brunet 30/41

Characterisation of SP-pomsets with boxes

What pomsets can be built with the signature 〈A, ·, ‖, [−]〉?
Question

Those that do not include the following patterns:

. .

. .

. . .

.

.

.

.

.

.

P
r
o
v
e
d

a
n

d
developp

e
d

in
C

o
q

Paul Brunet 31/41

Characterisation of SP-pomsets with boxes

What pomsets can be built with the signature 〈A, ·, ‖, [−]〉?
Question

Those that do not include the following patterns:

. .

. .

. . .

.

.

.

.

.

.

P
r
o
v
e
d

a
n

d
developp

e
d

in
C

o
q

Paul Brunet 31/41

Axiomatisation of isomorphism

BSP ` P; (Q;R) = (P;Q);R

BSP ` P; 1 = 1;P

BSP ` P ‖ (Q ‖ R) = (P ‖ Q) ‖ R
BSP ` P ‖ Q = Q ‖ P
BSP ` P ‖ 1 = 1 ‖ P

BSP ` [1] = 1
BSP ` [[P]] = [P]

P ≡ Q ⇔ BSP ` P = Q.

Theorem

P
r
o
v
e
d

a
n

d
developp

e
d

in
C

o
q

Paul Brunet 32/41

Axiomatisation of isomorphism

BSP ` P; (Q;R) = (P;Q);R

BSP ` P; 1 = 1;P

BSP ` P ‖ (Q ‖ R) = (P ‖ Q) ‖ R
BSP ` P ‖ Q = Q ‖ P
BSP ` P ‖ 1 = 1 ‖ P

BSP ` [1] = 1
BSP ` [[P]] = [P]

P ≡ Q ⇔ BSP ` P = Q.

Theorem

P
r
o
v
e
d

a
n

d
developp

e
d

in
C

o
q

Paul Brunet 32/41

Subsumption with boxes

1 : a

2 : a

3 : b

4 : b

5 : c 6 : c

7 : d
8 : d

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

v

P v Q when there is a homomorphism from Q to P , i.e. a bijective map

ϕ : EQ → EP such that

1) λP ◦ ϕ = λQ

2) ϕ (≤Q) ⊆≤P

3) ϕ (BP) ⊆ BQ

Paul Brunet 33/41

Subsumption with boxes

1 : a

2 : a

3 : b

4 : b

5 : c 6 : c

7 : d
8 : d

1 : a

2 : a

3 : b

4 : b

5 : c

6 : c

7 : d 8 : d

v

P v Q when there is a homomorphism from Q to P , i.e. a bijective map

ϕ : EQ → EP such that

1) λP ◦ ϕ = λQ

2) ϕ (≤Q) ⊆≤P

3) ϕ (BP) ⊆ BQ
Paul Brunet 33/41

Axiomatisation of subsumption

BSPv ` (P ‖ Q); (R ‖ S) v (P;R) ‖ (Q;S)

BSPv ` [P] v P

P v Q ⇔ BSPv ` P v Q.

Theorem

P
r
o
v
e
d

a
n

d
developp

e
d

in
C

o
q

Paul Brunet 34/41

Axiomatisation of subsumption

BSPv ` (P ‖ Q); (R ‖ S) v (P;R) ‖ (Q;S)

BSPv ` [P] v P

P v Q ⇔ BSPv ` P v Q.

Theorem

P
r
o
v
e
d

a
n

d
developp

e
d

in
C

o
q

Paul Brunet 34/41

Mutual exclusion (II)

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò
x Ix bx

y Iy by

Ò

Breaking mutual exclusion ↔ admitting an execution with the

following “pattern”: x bx

y by

Paul Brunet 35/41

Pomset logic

ϕ,ψ ::= ⊥ | a | ϕ ∨ ψ | ϕ ∧ ψ | ϕIψ | ϕ?ψ | [ϕ] | LϕM

P |= ϕIψ iff ∃P1,P2 such that P w P1 · P2 and P1 |= ϕ and P2 |= ψ

P |= ϕ?ψ iff ∃P1,P2 such that P w P1 ‖ P2 and P1 |= ϕ and P2 |= ψ

P |= [ϕ] iff ∃Q such that P w [Q] and Q |= ϕ

P |= LϕM iff ∃P ′,Q such that P w P ′ and P ′ E Q and Q |= ϕ.

P w Q ⇔ ∀ϕ, (P |= ϕ⇒ Q |= ϕ) .

Theorem

Paul Brunet 36/41

Mutual exclusion (III)

print(counter);
atomic{ atomic{

x:=counter; y:=counter;
x:=x+1; y:=y+1;
counter:=x; counter:=y;

} }
print(counter);

Ò
x Ix bx

y Iy by

Ò

Breaking mutual exclusion ↔ admitting an execution with the

following “pattern”: x bx

y by

↔ P |= L(x ? y)I (bx ?by)M

Paul Brunet 37/41

Outline

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Conclusions

Paul Brunet 38/41

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 39/41

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 39/41

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 39/41

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 39/41

Algebras with hypotheses

Doumane, Kuperberg, Pous, & Pradic, “Kleene Algebra with Hypotheses”,

FoSSaCS ’19.

Kappé, B., Silva, Wagemaker, & Zanasi, “Concurrent Kleene Algebra with

Observations: from Hypotheses to Completeness”, FoSSaCS ’20.

CKA with boxes and hypotheses?

All proofs had to be re-done from scratch.

Can we do better?

Paul Brunet 39/41

Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What does it mean?

We have the hammer, where is the nail?

Paul Brunet 40/41

Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What does it mean?

We have the hammer, where is the nail?

Paul Brunet 40/41

Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What does it mean?

We have the hammer, where is the nail?

Paul Brunet 40/41

Logics of behaviour

Traditional approaches to program logic rely on states

e.g. Hennessy-Milner Logic, (Propositional) Dynamic Logic...

Pomset logic relies on an abstract notion of “behaviour” instead.

What does it mean?

We have the hammer, where is the nail?

Paul Brunet 40/41

That’s all folks!

Thank you!

See more at:

http://paul.brunet-zamansky.fr

Paul Brunet 41/41

http://paul.brunet-zamansky.fr

Outline

I. Concurrent Kleene Algebra

II. CKA with observations

III. Partially observable CKA

IV. CKA with boxes

V. Conclusions

Paul Brunet 41/41

	Concurrent Kleene Algebra
	CKA with observations
	Partially observable CKA
	CKA with boxes
	Conclusions

