Recent developments

IN
 concurrent Kleene algebra

SÉvinalre PPS - Paris
Juin 2020
Paul Brunet
University College London

\square

Concurrent Kleene Algebra

Concurrent Kleene Algebra

C.A.R. Tony Hoare ${ }^{1}$, Bernhard Möller ${ }^{2}$, Georg Struth 3, and Ian Wehrman ${ }^{4}$

1 Microsoft Research, Cambridge, UK
${ }^{2}$ Universität Augsburg, Germany
${ }^{3}$ University of Sheffield, UK
${ }^{4}$ University of Texas at Austin, USA

Concurrent Kleene Algebra

On Locality and the Exchange Law for Concurrent Processes

C.A.R. Hoare ${ }^{1}$, Akbar Hussain ${ }^{2}$, Bernhard Möller ${ }^{3}$, Peter W. O'Hearn ${ }^{2}$, Rasmus Lerchedahl Petersen ${ }^{2}$, and Georg Struth ${ }^{4}$
${ }^{1}$ Microsoft Research Cambridge
${ }^{2}$ Queen Mary University of London
${ }^{3}$ Universität Augsburg
${ }^{4}$ University of Sheffield

Concurrent Kleene Algebra

Completeness Theorems for Bi-Kleene Algebras and Series-Parallel Rational Pomset Languages

Michael R. Laurence and Georg Struth
Department of Computer Science, University of Sheffield, UK
\{m.laurence,g.struth\}@sheffield.ac.uk

Concurrent Kleene Algebra with Tests

Peter Jipsen
Chapman University, Orange, California 92866, USA

First completeness theorem
(without the exchange law), CKA with tests is introduced.

Concurrent Kıeene Algebra

Concurrent Kleene Algebra

On Decidability of Concurrent Kleene Algebra*

Paul Brunet ${ }^{1}$, Damien Pous ${ }^{2}$, and Georg Struth ${ }^{3}$
1 Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
2 Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
3 Department of Computer Science, The University of Sheffield, UK

Concurrent Kleene Algebra

Concurrent Kleene Algebra: Free Model and Completeness

Tobias Kappé ${ }^{(凶)}$, Paul Brunet, Alexandra Silva, and Fabio Zanasi

University College London, London, UK

tkappe@cs.ucl.ac.uk

 Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness

 Jana Wagemaker (©), and Fabio Zanasi (©

University College London, London, United Kingdom; tkappe@cs.ucl.ac.uk

Pomsets with Boxes: Protection, Separation, and Locality in Concurrent Kleene Algebra

Paul Brunet (망
University College London, UK
paul.brunet-zamansky.fr paul@brunet-zamansky.fr
David Pym ©
University College London, UK
www.cantab.net/users/david.pym/
d.pym@ucl.ac.uk

Kleene algebra: the algebra of regular expressions

$$
\begin{gathered}
e, f \in E_{A}::=0|1| a|e \cdot f| e+f \mid e^{\star} \\
\llbracket \because \rrbracket: E_{A} \rightarrow \mathcal{P}\left(A^{\star}\right)
\end{gathered}
$$

The axioms of $K A$

$$
\begin{array}{ccc}
e+e=e & e+f=f+e & e+(f+g)=(e+f)+g \\
e+0=0 & e \cdot 1=e=1 \cdot e & e \cdot(f \cdot g)=(e \cdot f) \cdot g \\
e \cdot 0=0=0 \cdot e \quad e \cdot(f+g)=e \cdot f+e \cdot g & (e+f) \cdot g=e \cdot g+f \cdot g \\
e^{\star}=1+e \cdot e^{\star} & e \cdot f \leq f \Rightarrow e^{\star} \cdot f \leq f
\end{array}
$$

Theorem

$$
K A \vdash e=f \Leftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket .
$$

[^0]
KAT: the algebra of imperative programs

$$
\begin{gathered}
e, f \in E_{A \cup B_{T}}::=0|1| a \in A\left|t \in B_{T}\right| e \cdot f|e+f| e^{\star} \\
t, t_{1}, t_{2} \in B_{T}::=T|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
\end{gathered}
$$

The axioms of KAT
The axioms of $K A$.
For tests, the axioms of Boolean algeBra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad T=1 \quad \perp=0
$$

Kozen $\stackrel{1}{T}$ Smith, "Kleene alceBra with tests: Completeness and decidaBility", CSL 'ib

KAT: the algebra of imperative programs

$$
\begin{aligned}
& \qquad e, f \in E_{A \cup B_{T}}:=0|1| a \in A\left|t \in B_{T}\right| e \cdot f|e+f| e^{\star} \\
& \text { abort execution }
\end{aligned}
$$

$$
t, t_{1}, t_{2} \in B_{T}::=\top|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
$$

The axioms of KAT
The axioms of $K A$.
For tests, the axioms of Boolean akebra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad \top=1 \quad \perp=0
$$

Kozen $\stackrel{1}{T}$ Smith, "Kleene akeBra with tests: Completeness and decidability", CSL '96

KAT: the algebra of imperative procrams

$$
t, t_{1}, t_{2} \in B_{T}::=\top|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
$$

The axioms of KAT
The axioms of $K A$.
For tests, the axioms of Boolean akebra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad T=1 \quad \perp=0
$$

Kozen $\stackrel{1}{T}$ Smith, "Kleene alceBra with tests: Completeness and decidaBility", CSL 'ib

KAT: the algebra of imperative procrams

The axioms of $K A T$
The axioms of $K A$.
For tests, the axioms of Boolean akebra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad T=1 \quad \perp=0
$$

Kozen $\xlongequal[T]{1}$ Smith, "Kleene alceBra with tests: Completeness and decidaBility", CSL '96

KAT: the algebra of imperative procrams

$$
t, t_{1}, t_{2} \in B_{T}::=\top|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
$$

The axioms of KAT
The axioms of $K A$.
For tests, the axioms of Boolean akebra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad T=1 \quad \perp=0
$$

Kozen $\#$ Smith, "Kleene alcerra with tests: Completeness and decidasility", CSL '96

KAT: the algebra of imperative procrams

The axioms of KAT
The axioms of $K A$.
For tests, the axioms of Boolean algebra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad T=1 \quad \perp=0
$$

Kozen $\stackrel{1}{\boldsymbol{T}}$ Smith, "Kleene akeBra with tests: Completeness and decidability", CSL '96

KAT: The algebra of imperative procrams

The axioms of KAT
The axioms of $K A$.
For tests, the axioms of Boolean akebra.
The following "clue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2}=t_{1} \cdot t_{2} \quad \top=1 \quad \perp=0
$$

Kozen $\stackrel{1}{T}$ Smith, "Kleene alceBra with tests: Completeness and decidaBility", CSL '96

KAT

Free alcebra: lancuaces over Guarded Strincs, i.e. $2^{T} \cdot\left(A \cdot 2^{T}\right)^{\star}$.

KAT

Free alcebra: lancuaces over Guarded Strings, i.e. $2^{T} \cdot\left(A \cdot 2^{T}\right)^{\star}$.

α_{1}	1		α_{1}	1		α_{1}	0		α_{1}	1
α_{2}	0	$\xrightarrow{ }$	α_{2}	0	b	α_{2}	0		α_{2}	1
α_{3}	1		α_{3}	0		α_{3}	1		α_{3}	1
α_{4}	1		α_{4}	1		α_{4}	0		α_{4}	0

Encodes a simple while lancuace:
if b then p else $q \mapsto b \cdot p+\neg b \cdot q \quad$ while b do $p \mapsto(b \cdot p)^{\star} \cdot \neg b$

KAT

Free algebra: lancuaces over Guarded Strings, i.e. $2^{T} \cdot\left(A \cdot 2^{T}\right)^{\star}$.

Encodes a simple while lancuage:
if b then p else $q \mapsto b \cdot p+\neg b \cdot q \quad$ while b do $p \mapsto(b \cdot p)^{\star} \cdot \neg b$
Subsumes Hoare locic:

$$
\begin{aligned}
\{b\} p\{c\} & \Leftrightarrow b \cdot p \leq p \cdot c \\
& \Leftrightarrow b \cdot p=b \cdot p \cdot c \\
& \Leftrightarrow b \cdot p \cdot \neg c=0
\end{aligned}
$$

KAT

Free algebra: lancuaces over Guarded Strings, i.e. $2^{T} \cdot\left(A \cdot 2^{T}\right)^{\star}$.

Encodes a simple While language:
if b then p else $q \mapsto b \cdot p+\neg b \cdot q \quad$ while b do $p \mapsto(b \cdot p)^{\star} \cdot \neg b$
Subsumes Hoare locic:

$$
\begin{aligned}
\{b\} p\{c\} & \Leftrightarrow b \cdot p \leq p \cdot c \\
& \Leftrightarrow b \cdot p=b \cdot p \cdot c \\
& \Leftrightarrow b \cdot p \cdot \neg c=0
\end{aligned}
$$

Can we do the same for concurrent procrams?

Outline

I. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
V. Conclusions

Outline

l. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
V. Conclusions

BI-KleEne Alcebra

$$
e, f::=1|0| x|e \cdot f| e \| f|e+f| e^{\star} \mid e^{!}
$$

Definition

A Bi-Kleene alcesra is a structure $\langle A, 0,1, \cdot, \|,+, \star,!\rangle$ such that:
$\langle A, 0,1, \cdot,+, \star\rangle$ is a $K A$
$\langle A, 0,1, \|,+,!\rangle$ is a commutative $K A$.

bI-KıeEne Alcebra

$$
e, f::=1|0| x|e \cdot f| e \| f|e+f| e^{\star} \mid e^{!}
$$

Definition

A Bi-Kleene alceBra is a structure $\langle A, 0,1, \cdot, \|,+, \star,!\rangle$ such that:
$\langle A, 0,1, \cdot,+, \star\rangle$ is a $K A$
$\langle A, 0,1, \|,+,!\rangle$ is a commutative $K A$.

What is the free Bi-KA?

Pomsets: concurrent traces

Pomsets: concurrent traces

A is some alphabet of actions.

Pomsets: concurrent traces

A is some alphabet of actions.

Up-to isomorphism \equiv.

Pomsets: concurrent traces

A is some alphabet of actions.

Up-to isomorphism \equiv.

COMBINING POMSETS

$P_{2}=$

COMBINING POMSETS

COMBINING POMSETS

Completeness of biKA

$$
\begin{array}{rlrl}
\llbracket 1 \rrbracket & :=\{1\} & \llbracket 0 \rrbracket:=\emptyset \\
\llbracket x \rrbracket & :=\{x\} & \llbracket e+f \rrbracket & :=\llbracket e \rrbracket \cup \llbracket f \rrbracket \\
\llbracket e \cdot f \rrbracket & :=\{P ; Q \mid P \in \llbracket e \rrbracket, Q \in \llbracket f \rrbracket\} & \llbracket e \| f \rrbracket:=\{P \| Q \mid P \in \llbracket e \rrbracket, Q \in \llbracket f \rrbracket\} \\
\llbracket e^{\star} \rrbracket & :=\left\{P_{1} ; \cdots ; P_{n} \mid n \in \mathbb{N}, P_{i} \in \llbracket e \rrbracket\right\} & \llbracket e^{\prime} \rrbracket:=\left\{P_{1}\|\cdots\| P_{n} \mid n \in \mathbb{N}, P_{i} \in \llbracket e \rrbracket\right\}
\end{array}
$$

Theorem
biKAト $e=f \Leftrightarrow \llbracket e \rrbracket \equiv \llbracket f \rrbracket$.

Laurence \uparrow Struth, "Completeness Theorems for Bi-Kleene AlceBras and Series-Parallel Ra-
tional Pomset Lancuaces", RAMiCS ' 14

Concurrent Kleene Algebra

Interchance law

$$
(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d)
$$

INTERLEAVINGS AND SUBSUMPTION

Interchance law

$$
(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d) .
$$

$P \sqsubseteq Q$ when there is a homomorphism from Q to P, i.e. a Bijective map
$\varphi: E_{Q} \rightarrow E_{P}$ such that $\lambda_{P} \circ \varphi=\lambda_{Q}$ and $\varphi\left(\leq_{Q}\right) \subseteq \leq_{P}$.
$L \sqsubseteq:=\{P \mid \exists Q \in L: P \sqsubseteq Q\}$.

Completeness and decidability of CKA

Theorem
The problem of testing whether two given expressions e, f denote the same closed lancuace is ExpSpace-complete.
B., Pous, $\stackrel{\approx}{\boldsymbol{T}}$ Struth, "On Decidasility of Concurrent Kleene Algebra", CONCUR it

Theorem

$$
C K A \vdash e=f \Leftrightarrow \llbracket e \rrbracket \sqsubseteq=\llbracket f \rrbracket \sqsubseteq .
$$

Kappé, B., Silva, $\frac{1}{\boldsymbol{T}}$ Zanasi, "Concurrent Kleene AlgeBra: Free Model and Completeness", ESOP '18

OUtline

I. Concurrent Kleene Algebra

Ces II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
V. Conclusions

CKAT

Slogan
A KAT is a KA with a Boolean sUB-algebra.
A CKAT is a CKA with a Boolean suB-algebra.

CKAT

Slogan
A KAT is a KA with a Boolean sUB-algebra.
A CKAT is a CKA with a Boolean suB-algebra.

$$
t \cdot p \cdot \neg t
$$

CKAT

Slogan
A KAT is a KA with a Boolean sUB-algebra.
A CKAT is a CKA with a Boolean suB-algebra.

$$
t \cdot p \cdot \neg t=(1 \| t) \cdot(p \| 1) \cdot \neg t
$$

CKAT

Slogan
A KAT is a KA with a Boolean sUB-algebra.
A CKAT is a CKA with a Boolean suB-algebra.

$$
\begin{aligned}
t \cdot p \cdot \neg t & =(1 \| t) \cdot(p \| 1) \cdot \neg t \\
& \leq((1 \cdot p) \|(t \cdot 1)) \cdot \neg t
\end{aligned}
$$

CKAT

Slogan
A KAT is a KA with a Boolean suB-algeBra.
A CKAT is a CKA with a Boolean suB-algebra.

$$
\begin{aligned}
t \cdot p \cdot \neg t & =(1 \| t) \cdot(p \| 1) \cdot \neg t \\
& \leq((1 \cdot p) \|(t \cdot 1)) \cdot \neg t \\
& =(p \| t) \cdot(1 \| \neg t)
\end{aligned}
$$

CKAT

Slogan
A KAT is a KA with a Boolean suB-alceBra.
A CKAT is a CKA with a BOOlean suB-algebra.

$$
\begin{aligned}
t \cdot p \cdot \neg t & =(1 \| t) \cdot(p \| 1) \cdot \neg t \\
& \leq((1 \cdot p) \|(t \cdot 1)) \cdot \neg t \\
& =(p \| t) \cdot(1 \| \neg t) \\
& \leq(p \cdot 1) \|(t \cdot \neg t)
\end{aligned}
$$

CKAT

Slogan
A KAT is a KA with a Boolean suB-algeBra.
A CKAT is a CKA with a BOOlean suB-algebra.

$$
\begin{aligned}
t \cdot p \cdot \neg t & =(1 \| t) \cdot(p \| 1) \cdot \neg t \\
& \leq((1 \cdot p) \|(t \cdot 1)) \cdot \neg t \\
& =(p \| t) \cdot(1 \| \neg t) \\
& \leq(p \cdot 1) \|(t \cdot \neg t) \\
& =p \|(t \wedge \neg t)
\end{aligned}
$$

CKAT

Slogan
A KAT is a KA with a Boolean suB-algeBra.
A CKAT is a CKA with a Boolean suB-algebra.

$$
\begin{aligned}
t \cdot p \cdot \neg t & =(1 \| t) \cdot(p \| 1) \cdot \neg t \\
& \leq((1 \cdot p) \|(t \cdot 1)) \cdot \neg t \\
& =(p \| t) \cdot(1 \| \neg t) \\
& \leq(p \cdot 1) \|(t \cdot \neg t) \\
& =p \|(t \wedge \neg t) \\
& =p\|\perp=p\| 0=0
\end{aligned}
$$

CKAT: DOOMED!

Slogan
A KAT is a KA with a Boolean suB-algeBra.
A CKAT is a CKA with a Boolean sub-algebra.

$$
\begin{aligned}
t \cdot p \cdot \neg t & =(1 \| t) \cdot(p \| 1) \cdot \neg t \\
& \leq((1 \cdot p) \|(t \cdot 1)) \cdot \neg t \\
& =(p \| t) \cdot(1 \| \neg t) \\
& \leq(p \cdot 1) \|(t \cdot \neg t) \\
& =p \|(t \wedge \neg t) \\
& =p\|\perp=p\| 0=0
\end{aligned}
$$

\leftrightarrow For every procram and every assertion, the triple $\{t\} p\{t\}$ holds.
\leftrightarrow Every test is invariant under every procram.

Who's to blame?

$$
\begin{array}{rlr}
t \cdot p \cdot \neg t & \leq p \|(t \cdot \neg t) & \text { (CKA axioms) } \\
& =p \|(t \wedge \neg t) & (\wedge=\cdot) \\
& =p \| \perp & (\text { Boolean axioms }) \\
& =p \| 0=0 & (\perp=0+\text { CKA axioms })
\end{array}
$$

Who's to blame?

$$
\begin{array}{rlr}
t \cdot p \cdot \neg t & \leq p \|(t \cdot \neg t) & \text { (CKA axioms) } \\
& =p \|(t \wedge \neg t) & \text { (Boolean axioms) } \\
& =p \| \perp & (\perp=0+\text { CKA axioms) } \\
& =p \| 0=0 & \text { (} 1 \text {) }
\end{array}
$$

$$
a \wedge b=a \cdot b
$$

"If we observe a, and then OBserve b without any action in Between, then Both OBservations are made on the same state. Therefore that state simultaneously satisfies a and b."

Who's to blame?

$$
\left.\begin{array}{rlr}
t \cdot p \cdot \neg t & \leq p \|(t \cdot \neg t) & \text { (CKA axioms) } \\
& =p \|(t \wedge \neg t) & \text { (Boolean axioms) } \\
& =p \| \perp & (\perp=0+\text { CK axioms) } \\
& =p \| 0=0 & (\Lambda
\end{array}\right)
$$

$$
a \Delta b=a \cdot b
$$

"If we observe a, and then OBserve b without any action in Between, then Both OBservations are made on the same state. Therefore that state simultaneously satisfies a and b."

$$
a \wedge b \leq a \cdot b
$$

CKAT

$$
\begin{gathered}
e, f \in E_{A \cup B_{T}}::=0|1| a \in A\left|t \in B_{T}\right| e \cdot f|e \| f| e+f \mid e^{\star} \\
t, t_{1}, t_{2} \in B_{T}::=T|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
\end{gathered}
$$

The axioms of CKAT
The axioms of CKA.
For tests, the axioms of Boolean alcesra.
The following "clue" axioms:
$t_{1} \vee t_{2}=t_{1}+t_{2}$
$t_{1} \wedge t_{2}=t_{1} \cdot t_{2}$
$\top=1$
$\perp=0$

CKAO

$$
\begin{gathered}
e, f \in E_{A \cup B_{T}}::=0|1| a \in A\left|t \in B_{T}\right| e \cdot f|e \| f| e+f \mid e^{\star} \\
t, t_{1}, t_{2} \in B_{T}::=T|\perp| \alpha \in T\left|t_{1} \wedge t_{2}\right| t_{1} \vee t_{2} \mid \neg t
\end{gathered}
$$

The axioms of CKAO

The axioms of CKA.
For tests, the axioms of Boolean algebra.
The following "Glue" axioms:

$$
t_{1} \vee t_{2}=t_{1}+t_{2} \quad t_{1} \wedge t_{2} \leq t_{1} \cdot t_{2} \quad \perp=0
$$

INTERLUDE: (C)KA wITH HYPOTHESES

EA: Expressions over A.

INTERLUDE: (C)KA wITH HYPOTHESES

EA: Expressions over A.
H : set of hypotheses $e \leq f$, where $e, f \in E_{A}$.

Interlude: (C)KA with hypotheses

EA: Expressions over A.
H : set of hypotheses $e \leq f$, where $e, f \in E_{A}$.
Contexts: $C::=*|s \cdot C| C \cdot s|s\|C \mid C\| s$ where $s, t::=a| s \cdot t \mid s \| t$.

INTERLUDE: (C)KA wITH HYPOTHESES

EA: Expressions over A.
H : set of hypotheses $e \leq f$, where $e, f \in E_{A}$.
Contexts: $C:=*|s \cdot C| C \cdot s|s||C| C| | s$ where $s, t::=a|s \cdot t| s| | t$.

biKA $A+\mathrm{H}$	
$C K A+H \vdash e=f$	$e \leq f \in H$

INTERLUDE: (C)KA wITH HYPotheses

EA: Expressions over A.
H : set of hypotheses $e \leq f$, where $e, f \in E_{A}$.
Contexts: $C::=*|s \cdot C| C \cdot s|s||C| C| | s$ where $s, t::=a|s \cdot t| s| | t$.

$C K A+H$	$\frac{b i K A \vdash e=f}{C K A+H \vdash e=f}$	$\frac{e \leq f \in H}{C K A+H \vdash e \leq f}$
H-closure	$L \subseteq \downarrow^{H}$	$\frac{e \leq f \in H \quad C[[f]] \subseteq L \downarrow^{H}}{C[\llbracket e \rrbracket] \subseteq \downarrow^{H}}$

INTERLUDE: (C)KA wITH HYPOTHESES

Theorem CKA +Hトe=f $\Rightarrow \llbracket e \rrbracket \downarrow \downarrow^{H}=\llbracket f \rrbracket \downarrow^{H}$

Doumane, KuperBerG, Pous, $\frac{\stackrel{T}{T}}{}$ Pradic, "Kleene AlgeBra with Hypotheses", FoSSaCS '19

Kappé, B., Silva, Wacemaker, $\underset{T}{ }$ Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS '20

COMPLETENESS OF CKAO

CKAO as an instance of CKA+H

exch $=\left\{(e \| f) \cdot(g \| h) \leq(e \cdot g) \|(f \cdot h) \mid e, f, g, h \in E_{A \cup B_{T}}\right\} ;$
bool $=\{p \leq q \mid$ Bool $\vdash p \leq q\}$;
contr $=\left\{p \wedge q \leq p \cdot q \mid p, q \in B_{T}\right\}$;
glue $=\{\perp \leq 0\} \cup\left\{p \vee q \leq p+q \mid p, q \in B_{T}\right\}$;
obs $=$ exch \cup bool \cup contr \cup glue.

$$
\text { CKAO } \vdash e=f \Leftrightarrow C K A+o b s \vdash e=f
$$

By the previous (Generic) theorem, we get CKAO $-e=f \Rightarrow \llbracket e \rrbracket \downarrow^{\text {obs }}=\llbracket f \rrbracket \downarrow^{\text {obs }}$.

Theorem

$$
C K A O \vdash e=f \Leftrightarrow \llbracket e \rrbracket \downarrow^{\text {obs }}=\llbracket f \rrbracket \downarrow^{\text {obs } . ~}
$$

OUtline

I. Concurrent Kleene Algebra
II. CKA with OBservations
[y Il. Partially OBservable CKA
IV. CKA with Boxes
V. Conclusions

LITMUS TEST: SEQUENTIAL CONSISTENCY

$$
\begin{array}{rlr}
\{\mathrm{r} 0=0 \text { \&\& } \mathrm{r} 1=0\} & \\
\mathrm{x}:=1 \\
\mathrm{r} 0:=\mathrm{y}
\end{array} \left\lvert\, \begin{array}{ll}
\mathrm{y}:=1 \\
\mathrm{r} 1:=\mathrm{x} & \text { Ingredients: } \\
\{!(\mathrm{r} 0 & =1| | \mathrm{r} 1==1)\}
\end{array}\right.
$$

Algebra of Observations

What Boolean algeBra can we cet out of OBservations of the shape $r_{0}=0$?

Algebra of Observations

What Boolean algeBra can we cet out of OBservations of the shape $r_{0}=0$? Answer: sets of memory states $V_{\text {AR }} \rightarrow V_{\text {AL }}$

Algebra of observations

What Boolean algeBra can we cet out of OBservations of the shape $r_{0}=0$?
Answer: sets of memory states $V_{\text {AR }} \rightarrow V_{\text {AL }}$
What is the specification of an assicnment $v \leftarrow n$?

Algebra of observations

What Boolean algeBra can we cet out of OBservations of the shape $r_{0}=0$?
Answer: sets of memory states $V_{\text {AR }} \rightarrow V_{\text {AL }}$
What is the specification of an assicnment $v \leftarrow n$?
Answer:

$$
\sum_{s \in S \text { tate }} s \cdot(v \leftarrow n) \cdot s[v \mapsto n] .
$$

Algebra of Observations

What BOOlean algeBra can we get out of OBservations of the shape $r_{0}=0$?
Answer: sets of memory states $V_{\text {AR }} \rightarrow V_{\text {AL }}$
What is the specification of an assicnment $v \leftarrow n$?
Answer:

$$
\sum_{s \in S t a t e} s \cdot(v \leftarrow n) \cdot s[v \mapsto n] .
$$

Problem: how do we execute those in parallel?

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline x & 0 \\
y & 0 \\
\hline
\end{array} \xrightarrow{x \leftarrow 1} \begin{array}{|l|l|}
\hline x & 1 \\
y & 0 \\
\hline
\end{array} \\
& \begin{array}{|c|c|}
\hline x & 0 \\
y & 0 \\
\hline
\end{array} \xrightarrow{y \leftarrow 1} \begin{array}{|l|l|}
\hline x & 0 \\
y & 1 \\
\hline
\end{array}
\end{aligned}
$$

Algebra of observations

Solution: Move to partial functions $V_{A R} \rightarrow V_{A L}$

Algebra of Observations

Solution: Move to partial functions $V_{A R} \rightarrow V_{A L}$
Algeßraically: Boolean algeßra \rightarrow Pseudo-complemented distriButive lattice.
Same axioms as $B A$ regarding $\vee, \wedge, \top, \perp$, plus:

$$
p \leq q \Leftrightarrow p \wedge q=\perp .
$$

CAUSALITY VS COMPOSITIONALITY

CAUSALITY VS COMPOSITIONALITY

Solution: we need to explicitly close the system.

$$
\llbracket e \rrbracket \rightarrow \llbracket e \rrbracket \cap \text { CausalPomsets. }
$$

CAUSALITY VS COMPOSITIONALITY

Solution: we need to explicitly close the system.

$$
\llbracket e \rrbracket \rightarrow \llbracket e \rrbracket \cap \text { CausalPomsets. }
$$

Litmus test:

$$
t:=\left(r_{0}=0 \wedge r_{1}=0\right) \cdot\left(\left(x \leftarrow 1 \cdot r_{0} \leftarrow y\right) \|\left(y \leftarrow 1 \cdot r_{1} \leftarrow x\right)\right) \cdot \overline{\left(r_{0}=1 \vee r_{1} \vee 1\right)}
$$

$$
\llbracket t \rrbracket \cap \text { CausalPomsets }=\emptyset
$$

Outline

I. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA

IV IV. CKA with Boxes
V. Conclusions

Mutual exclusion

print (counter) ;

Mutual exclusion

nt (counter) ;		
atomic\{		at
	x :=counter;	
	x:=x+1;	
	counter:=x;	
\}		\}

print (counter) ;

POMSETS WITH BOXES

POMSETS WITH BOXES

Characterisation of SP-pomsets with boxes
Question
What pomsets can Be Built with the signature $\langle A, \cdot, \|,[-]\rangle$?

Characterisation of SP-pomsets with boxes

Question
What pomsets can Be Built with the signature $\langle A, \cdot, \|,[-]\rangle$?
Those that do not include the following patterns:

AxIOMATISATION OF ISOMORPHISM

$$
\begin{aligned}
& \text { BSP } \vdash \\
& \text { BSP } \vdash \\
& \text { BSP } \vdash \\
& \text { BSP }- \\
& \text { BSP }+ \\
& \text { BSP } \vdash \\
& \text { BSP } \vdash \\
& P ;(Q ; R)=(P ; Q) ; R \\
& P ; 1=1 ; P \\
& P\|(Q \| R)=(P \| Q)\| R \\
& P\|Q=Q\| P \\
& P \| 1=1| | P \\
& {[1]=1} \\
& {[[P]]=[P]} \\
& P \equiv Q \Leftrightarrow B S P \vdash P=Q .
\end{aligned}
$$

Theorem

AxIOMATISATION OF ISOMORPHISM

$B S P \vdash$

$$
\begin{aligned}
P ;(Q ; R) & =(P ; Q) ; R \\
P ; 1 & =1 ; P
\end{aligned}
$$

$$
\begin{aligned}
P \|(Q \| R) & =(P \| Q) \| R \\
P \| Q & =Q \| P \\
P \| 1 & =1 \| P
\end{aligned}
$$

$B S P \vdash$
$B S P \vdash$

$$
\begin{aligned}
{[1] } & =1 \\
{[[P]] } & =[P]
\end{aligned}
$$

Theorem

$$
P \equiv Q \Leftrightarrow B S P \vdash P=Q .
$$

SUBSUMPTION WITH BOXES

$P \sqsubseteq Q$ when there is a homomorphism from Q to P, i.e. a Bijective map $\varphi: E_{Q} \rightarrow E_{P}$ such that
n) $\lambda_{P} \circ \varphi=\lambda_{Q}$
2) $\varphi\left(\leq_{Q}\right) \subseteq \leq_{P}$

SUBSUMPTION WITH BOXES

$P \sqsubseteq Q$ when there is a homomorphism from Q to P, i.e. a Bijective map $\varphi: E_{Q} \rightarrow E_{P}$ such that
n) $\lambda_{P} \circ \varphi=\lambda_{Q}$
2) $\varphi\left(\leq_{Q}\right) \subseteq \leq_{P}$
3) $\varphi\left(\mathcal{B}_{P}\right) \subseteq \mathcal{B}_{Q}$

AxIOMATISATION OF SUBSUMPTION

$$
\begin{array}{cc}
B S P_{\sqsubseteq} \vdash & (P \| Q) ;(R \| S) \sqsubseteq(P ; R) \|(Q ; S) \\
B S P_{\sqsubseteq} \vdash & {[P] \sqsubseteq P} \\
P \sqsubseteq Q \Leftrightarrow B S P \sqsubseteq \vdash P \sqsubseteq Q .
\end{array}
$$

AxIOMATISATION OF SUBSUMPTION

$$
\begin{array}{cc}
B S P_{\sqsubseteq} \vdash & (P \| Q) ;(R \| S) \sqsubseteq(P ; R) \|(Q ; S) \\
B S P_{\sqsubseteq} \vdash & {[P] \sqsubseteq P}
\end{array}
$$

$$
P \sqsubseteq Q \Leftrightarrow B S P_{\sqsubseteq} \vdash P \sqsubseteq Q .
$$

Mutual exclusion (II)

Breaking mutual exclusion \leftrightarrow admitting an execution with the following "pattern":

Pomset logic

$$
\varphi, \psi::=\perp|a| \varphi \vee \psi|\varphi \wedge \psi| \varphi>\psi|\varphi \star \psi|[\varphi] \mid(\varphi)
$$

$P \models \varphi>\psi$ iff $\exists P_{1}, P_{2}$ such that $P \sqsupseteq P_{1} \cdot P_{2}$ and $P_{1} \models \varphi$ and $P_{2} \models \psi$
$P \models \varphi \star \psi$ iff $\exists P_{1}, P_{2}$ such that $P \sqsupseteq P_{1} \| P_{2}$ and $P_{1} \models \varphi$ and $P_{2}=\psi$
$P \models[\varphi]$ iff $\exists Q$ such that $P \sqsupseteq[Q]$ and $Q \models \varphi$
$P \models(\varphi)$ iff $\exists P^{\prime}, Q$ such that $P \sqsupseteq P^{\prime}$ and $P^{\prime} \boxplus Q$ and $Q \models \varphi$.

$$
P \sqsupseteq Q \Leftrightarrow \forall \varphi,(P \models \varphi \Rightarrow Q \models \varphi) .
$$

Mutual exclusion (III)

Breaking mutual exclusion \leftrightarrow admitting an execution with the following "pattern": $t \partial_{x} \longrightarrow \Delta_{x}$

$\leftrightarrow P \models\left(\left(\omega_{0} \star t \partial_{y}\right) \vee\left(\omega_{x} \star \Delta_{y}\right)\right)$

OUtline

I. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
(x) V. Conclusions

AlgEBRAS WITH HYPOTHESES

 FoSsaCs '19.

AlGEBRAS WITH HYPOTHESES

Doumane, KuperBerg, Pous, $\stackrel{F}{F}$ Pradic, "Kleene AlgeBra with Hypotheses", FoSSaCS '19.
Kappé, B., Silva, Wacemaker, ¿Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS 20.

Algebras with hypotheses

Doumane, KuperBerg, Pous, $\stackrel{F}{F}$ Pradic, "Kleene AlgeBra with Hypotheses", FOSSaCS 'I9.
Kappé, B., Silva, Wagemaker, $\stackrel{\leftarrow}{\text { I }}$ Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS 20.
CKA with Boxes and hypotheses?

Algebras with hypotheses

Doumane, KuperBerg, Pous, $\xlongequal[F]{c}$ Pradic, "Kleene AlgeBra with Hypotheses", FOSSaCS 'I9.
Kappé, B., Silva, Wagemaker, $\stackrel{\rightharpoonup}{T}$ Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS 20.
CKA with Boxes and hypotheses?

All proofs had to Be re-done from scratch.

Algebras with hypotheses

Doumane, KuperBerg, Pous, $\underset{\tau}{\tau}$ Pradic, "Kleene Algebra with Hypotheses", FOSSaCS 'I9.
Kappé, B., Silva, Wagemaker, $\stackrel{\rightharpoonup}{T}$ Zanasi, "Concurrent Kleene Algebra with Observations: from Hypotheses to Completeness", FoSSaCS 20.
CKA with Boxes and hypotheses?

All proofs had to Be re-done from scratch.
Can we do Better?

LOGICS OF BEHAVIOUR

Traditional approaches to procram locic rely on states e.c. Hennessy-Milner Locic, (Propositional) Dynamic Locic...

LOGICS OF BEHAVIOUR

Traditional approaches to procram locic rely on states e.c. Hennessy-Milner Locic, (Propositional) Dynamic Locic.

Pomset locic relies on an abstract notion of "Behaviour" instead.

LOGICS OF BEHAVIOUR

Traditional approaches to procram locic rely on states e.c. Hennessy-Milner Locic, (Propositional) Dynamic Locic.

Pomset locic relies on an abstract notion of "Behaviour" instead.

What does it mean?

LOGICS OF BEHAVIOUR

Traditional approaches to procram locic rely on states e.c. Hennessy-Milner Locic, (Propositional) Dynamic Locic..

Pomset locic relies on an abstract notion of "Behaviour" instead.

What does it mean?
We have the hammer, where is the nail?

That's all folks!

Thank you!

See more at:
http://paul.brunet-zamansky.fr

Outline

I. Concurrent Kleene Algebra
II. CKA with OBservations
III. Partially observable CKA
IV. CKA with Boxes
V. Conclusions

[^0]: Kozen, "A completeness theorem for Kleene alceBras and the algebra of recular events", LiCS'90

