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KLEENE ALGEBRA: THE ALGEBRA OF REGULAR EXPRESSIONS

e, fEEA=0]| 1| a| e f | etf | e*

[]: Ea— P(AY)

|'Tke axioms of KAI

e-ffle=e eFS=1E=ise e+ (f+g)=(e+f)+g

e+ 0=0 e-l=e=1-¢ e-(f-g)=(e-f)-g

e-0=0=0-e e-(f+g)=e-ft+e-g (e+f)-g=e-g+f-g
ef=1+4+¢e-e* e-f<f=e"-f<fr

Theorem
KAF e=f < [e] = [f].

LiCS 90

Kozen, "A completeness theorem £or Kleene alaerras and the alaerra of recular events',

Paul Brunet
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KAT: THE ALGEBRA OF IMPERATIVE PROGRAMS
e,f €Eaup, =0 | 1 | acA | t€Br | e-f | e+f | ¢

tth,b€Bru=T | L | a€T | iAt | 1V | -t

|'ﬂ-xe axioms Of KATI
= The axioms of KA.

® For tests, the axioms of BoOlean alaerra.
= The following "alue” axioms:

thiVh=t+ b ti1 Nth =11 - to T =1 =0

’Koze_r\ = Smith, 'Kleene alaesra with tests: Completeness and decidagility’, CSL 96

Paul Brunet d/uH
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e,fEEWO | 1] acA | t € Br | e-f | e+f | e
aBort execution

tth,b€Bru=T | L | a€T | iAt | 1V | -t

|'ﬂ-xe axioms Of KATI
= The axioms of KA.

® For tests, the axioms of BoOlean alaerra.
= The following "alue” axioms:

thiVh=t+ b ti1 Nth =11 - to T =1 =0
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KAT: THE ALGEBRA OF IMPERATIVE PROGRAMS
skip
e,fEEWo 1| acA | te€Br | e-f | e+f | ¢
aROrt execution

tth,b€Bru=T | L | a€T | iAt | 1V | -t

|'ﬂ-xe axioms Of KATI
= The axioms of KA.

® For tests, the axioms of BoOlean alaerra.
= The following "alue” axioms:

thiVh=t+ b ti1 Nthb =11 - to T =1 =0

’Koze_r\ = Smith, 'Kleene alaesra with tests: Completeness and decidagility’, CSL 96
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KAT: THE ALGEBRA OF IMPERATIVE PROGRAMS

skip
e,f €Eaup, i=>0 ™1 | a€ A | t€EBT | e-f | e+f | ¢
aRort execution atomic action atomic test

tth,b€Bru=T | L | a€T | iAt | 1V | -t

|'ﬂ-xe axioms Of KATI
= The axioms of KA.

® For tests, the axioms of BoOlean alaerra.
= The following "alue” axioms:

thiVh=t+ b ti1 Nthb =11 - to T =1 =0

’Koze_r\ = Smith, 'Kleene alaesra with tests: Completeness and decidagility’, CSL 96
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KAT: THE ALGEBRA OF IMPERATIVE PROGRAMS

skip se@uential composition
e,fEEWO 1|/(9'EA‘ fGTBT|e.f|e+f|e*
aBort execution atomic action atomic test

tth,b€Bru=T | L | a€T | iAt | 1V | -t

|'ﬂ-xe axioms Of KATI
= The axioms of KA.

® For tests, the axioms of BoOlean alaerra.
= The following "alue” axioms:

thiVh=t+ b ti1 Nthb =11 - to T =1 =0

’Koze_r\ = Smith, 'Kleene alaesra with tests: Completeness and decidagility’, CSL 96
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KAT: THE ALGEBRA OF IMPERATIVE PROGRAMS

skip se@uential composition
e,fEEWO 1 |/(9'EA ‘ tGTBT | e-f | e—&—f{
aBort execution atomie action atomic test non-deterministic choice

t,th,b €Bru=T | L | a€T | iAt | 1V | -t

|'ﬂ-xe axioms Of KATI
= The axioms of KA.

® For tests, the axioms of BoOlean alaerra.
= The following "alue” axioms:

thiVh=t+ b ti1 Nthb =11 - to T =1 =0

’Koze_r\ = Smith, 'Kleene alaesra with tests: Completeness and decidagility’, CSL 96
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non-deterministic Ioop

KAT: THE ALGEBRA OF IMPERATIVE PROGRAMS

skip se@uential composition
e,fEEWO 1 |/(9'EA ‘ tGTBT | e-f | e—&—f{
aBort execution atomie action atomic test non-deterministic choice

t,th,b €Bru=T | L | a€T | iAt | 1V | -t

|'ﬂ-xe axioms Of KATI
= The axioms of KA.

® For tests, the axioms of BoOlean alaerra.
= The following "alue” axioms:

thiVh=t+ b ti1 Nthb =11 - to T =1 =0

’Koze_r\ = Smith, 'Kleene alaesra with tests: Completeness and decidagility’, CSL 96
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KAT
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KAT

® [ree alaepra: lanGuaces over Guarded Strinas, ie 27 - (A-27)"

& Encodes a simple While lanGuace:

Paul Brunet

a
as
a3
ay

1

0
1
1

if b then pelse g— b-p+-b-g

ai
az
as
Qg

1

0
0
1

a1
e
as
Qg

0

0
1
0

while b do p+ (b-p)*-—b

a
az
as
ay

O = =

S/4H



KAT

® [ree alaepra: lanGuaces over Guarded Strinas, ie 27 - (A-27)"

& Encodes a simple While lanGuace:

= Sursumes Hoare loaic:

Paul Brunet

a
as
a3
ay

1

0
1
1

if b then pelse g— b-p+-b-g

ai
az
as
Qg

1

0
0
1

{b}p{c} = b-p<p-c

aq
b oo
a3
Qg

0

0
1
0

Sb-p-—c=0

a
az
as
ay

O = =

while b do p+ (b-p)*-
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KAT

® [ree alaepra: lanGuaces over Guarded Strinas, ie 27 - (A-27)"

& Encodes a simple While lanGuace:

= Sursumes Hoare loaic:

a
as
a3
ay

1

0
1
1

if b then pelse g— b-p+-b-g

ai
az
as
Qg

1

0
0
1

{b}p{c} = b-p<p-c

aq
b oo
a3
Qg

0

0
1
0

Sb-p-—c=0

Can we do the same for concurrent proaraws?

Paul Brunet

a
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ay

O = =

while b do p+ (b-p)*-
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OUTLINE

| Concurrent Kleene Alaerra
Il. CKA with orservations

ll. Partially orservarle CKA

IV. CKA with BOxes

V. Conclusions

Paul Brunet L/
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BI-KLEENE ALGEBRA

e,fi=1 10| x| e-f | e|f]| et+f | e | e

Definition
A Bi-Kleene alcerra is a structure (A,0,1,- ||, +,*,!) such that:
B (A 0,1, +,%) is 8 KA

= (A, 0,1,],+,!) is 8 commutative KA.

Paul Brunet 8/



BI-KLEENE ALGEBRA

e,fi=1 10| x| e-f | e|f]| et+f | e | e

Definition
A Bi-Kleene alcerra is a structure (A,0,1,- ||, +,*,!) such that:
B (A 0,1, +,%) is 8 KA

= (A, 0,1,],+,!) is 8 commutative KA.

What is the free BI-KA?

Paul Brunet 8/



POMSETS: CONCURRENT TRACES

4:b
/7 d — 8: d\
/ 6

/ :

il g
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POMSETS: CONCURRENT TRACES

A is some alpharet of actions.

4:b
1;a/7:d—)8:d§‘6;c
\ /

3:b

lageling function
finite set of events cEp — A

P = (Ep,<p,\p)

partial order \_/

QEPXEP

Paul Brunet 9/H



POMSETS: CONCURRENT TRACES

A is some alpharet of actions.

4:b
1:3/"7:d—>8:d§‘)6:C
\ /

3:b
<

lageling function

finite set of events cEp — A

P = (Ep,<p,\p)

partial order \_/

QEPXEP

Up—to isomorphism =.
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POMSETS: CONCURRENT TRACES

A is some alpharet of actions.

I\
/

lageling function
finite set of events cEp — A

P = (Ep,<p,\p)

partial order
- Ep X EP

Up—to isomorphism =.

Paul Brunet 9/H



COMBINING POMSETS
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COMBINING POMSETS
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COMBINING POMSETS

a—> p—>cC

Py Py = Py P, =

Paul Brunet O/H



COMPLETENESS OF BIKA

[] = {1} [0] =0
[x] = {x} [e + ] = [e] U [f]
[e- fl={P:Q | P€[e], Qe[f]} [ell fl={Pl Q@ | Pele], Qe[fl}
[e] :={P1;---;P. | nEN, P; € [e]} [e]={Pill--- || P. | n€N, P; € [e]}
Theorem

biKAF e = f < [e] = [f].

Laurence & Struth, "Completeness Theorems for Bi-Kleene AlaeRras and Series-Parallel R.a-
tional Pomset Lanauaces”, RAMICS '+

Paul Brunet ll/



CONCURRENT KLEENE ALGEBRA

Interchanage law I

(allb)-(clid)<(a-c)l(b-d)

No parallel iteration

CKA /
A concurrent Kleene alaerra is a wesk ei-Kleene alaerra (A,0,1, - ||, +,*)

satisfying the interchance law.

Paul Brunet 2./



INTERLEAVINGS AND SUBSUMPTION

| Interchanae law I

(allb)-(clfd)<(a-c) [ (b-d).

a—>c a—»c
%6 e
b—> d b—> d

P C Q when there is 8 homomorphism £rom Q to P, ie. a Bijective map
0 Eqg = Ep such that Apogp = \g and ¢ (<q) C<p.

IE:={P |3QelL:PCQ}.

Paul Brunet 3/tH



COMPLETENESS AND DECIDABILITY OF CKA

Theorem
The proeklem of testina whether two Given expressions e, f denote the

same closed lanGuace is ExpSpace-complete.
’ B, Pous, & Struth, "On Decidagility of Concurrent Kleene Alaerra”, CONCUR. 1

Theorem
CKAF e=f & [e]= = [f]=.

kappé, B Silva, = Z anasi, "Concurrent Kleene Alaesra: Free Model and Completeness” ESOP
18

I/

Paul Brunet



OUTLINE

l. Concurrent Kleene Alcerra
@» Il. CKA with osservations

ll. Partially orservarle CKA

IV. CKA with rOxes

V. Conclusions

Paul Brunet
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CKAT
B

A KAT is 8 KA with a8 BOOlean sup-alaekra.
A CKAT is 3 CKA with 8 BRoolean sur-alaerra.

Paul Brunet /4
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CKAT
B

A KAT is 8 KA with a8 BOOlean sup-alaekra.
A CKAT is 3 CKA with 8 BRoolean sur-alaerra.

tpot=(1]1)-(p1)
<((1p) [ (2-1)) -t
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CKAT
B

A KAT is 8 KA with a8 BOOlean sup-alaekra.
A CKAT is 3 CKA with 8 BRoolean sur-alaerra.

tp-ot=(1]|8)-(p] 1)t
<((-p) [l (¢-1)) -t
—(pllD)-(1]-t)

/4
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CKAT
B

A KAT is 8 KA with a8 BOOlean sup-alaekra.
A CKAT is 3 CKA with 8 BRoolean sur-alaerra.

tp-ot=(1]|8)-(p] 1)t
(1-p) |l (- 1))t
pllt)-(ll-t)

p-1) [ (t-—t)

VAN

(
(
(
(

VAN

Paul Brunet /4



CKAT
B

A KAT is 8 KA with a8 BOOlean sup-alaekra.
A CKAT is 3 CKA with 8 BRoolean sur-alaerra.
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CKAT
B

A KAT is 8 KA with a8 BOOlean sup-alaekra.
A CKAT is 3 CKA with 8 BRoolean sur-alaerra.

tp-ot=(1]|8)-(p] 1)t
<((-p) [l (¢-1)) -t
—(pllD)-(1]-t)
<(p-1) || (t-t)
—pll (tA-t)
—pllL=pl0=0

Paul Brunet /4



ckAT: DOOMED!

A KAT is 8 KA with a8 BOOlean sup-alaekra.
A CKAT is 3 CKA with 8 BRoolean sur-alaerra.

(L6 (pll)-—t
((1-p) |l (£- 1))t
—(pll)- 1)

e D)o =i =

VAN

VAN

(p-1) | (¢ 1)
pll(En-t)
pllL=pl0o=0

< For every proaram and every assertion, the triple {t} p {t} holds.
+ Every test is invariant under every proaram.

Paul Brunet /4



WHO'S TO BLAME?

t-p-ot <pl(t-—t) (CKA aa<|onns)
=p|| (tA-t) = )
=p|L (Booclean axioms)
=pl0=0 (L =0+ CKA axioms)

Paul Brunet 1/



WHO'S TO BLAME?

t-p-—t <p|(t--t) (CKA axiams)
=p|| (tA-t) G )
=p|L (Booclean axioms)
=pl0=0 (L =0+ CKA axioms)

aANb = a-b

‘£ we oBserve a, and then okserve b without any action in petween, then
BOth OBservations are made on the same state. Therefore that state
simultaneously satisfies a and b."

Paul Brunet 1/



WHO'S TO BLAME?

t-p-—t <pll(t--t) (CKA axioms)
=p| (tA~1) (="
=p|L (Booclean axioms)
=pl0=0 (L =0+ CKA axioms)

arb—a-b

‘£ we oBserve a, and then okserve b without any action in petween, then
BOth OBservations are made on the same state. Therefore that state
simultaneously satisfies a and b."

anb < a-b

Paul Brunet 1/



CKAT

e,f €EEaug, =0 | 1 | a€A | teBr | e-f | e||f | e+f | €

t,t1,h €EBr =T | L | a€T | tsAty | 1Vt | -t

The axioms of CKAT]|
= The axioms of CKA.

e For tests, the axioms Of BOOlean alcerra.
i The following "clue" axioms:

tiVih =1t + b tihNtp =11 - b T =k 1L=0

Paul Brunet 18/+H



CKAO

e,f €EEaug, =0 | 1 | a€A | teBr | e-f | e||f | e+f | €

t,t1,h €EBr =T | L | a€T | tsAty | 1Vt | -t

The axioms of CKAO |
= The axioms of CKA.

e For tests, the axioms Of BOOlean alcerra.
i The following "clue" axioms:

hhVih=1%t + 1> hA A<t -t 1L =0

Paul Brunet 19/



INTERLUDE: (C)KA WITH HYPOTHESES

' E,: Expressions over A
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INTERLUDE: (C)KA WITH HYPOTHESES

' E,: Expressions over A
® H: set of hypotheses e < f,where e, f € Ep.
® Contexts: Ci=x | s-C | C-s | s|C | C|swheres,ti=a | s-t | s|t

CKA+H

biIKAFe="f

CKA+HEe=f

e<feH

CKA+HEe<f

Paul Brunet

20/



INTERLUDE: (C)KA WITH HYPOTHESES

' E,: Expressions over A
® H: set of hypotheses e < f,where e, f € Ep.
® Contexts: Ci=x | s-C | C-s | s|C | C|swheres,ti=a | s-t | s|t

CKA+H

biKAFe="f e<feH
CKA+HRFe=f CKA+HRFe<f
|_—H—closure'
<feH cllfFn < LM
i e < G
Clle]] € L}

Paul Brunet 20/H



INTERLUDE: (C)KA WITH HYPOTHESES

Theorem
CKA+HFe=f=[e|d" = [f]L"

’Doumar\e, Kupereera, Pous, = Pradic, 'Kleene Alaerra with Hypotheses", FOSSaCS 9

kappé, B, Silva, Waaemaker, & Zanasi, "Concurrent Kleene Alcesra with Orservations: £rom
Hypotheses to Completeness”’, FOSSaCS 2.0

Paul Brunet 2/



CoMPLETENESS oF CKAO

|CI<AO as an instance of CKA+H I
w exch={(e| f)-(gllh)<(e-g)l(f-h) |ef,g heEas }
& bool ={p<gq | Boolkp<gqg};
& contr={pAqg<p-q|pg€Brk
w glue={L<0}U{pVg<p+q|pqgeEBrk
B obs = exch U bool U contr U glue.

CKAOFe=f< CKA+obske="f

By the previous (@eneric) theorem, we et CKAO e = f = [e] % = [f]|°.

Theorem
CKAO - e = f & [e]o® = [f]{°.

Paul Brunet

22/4



OUTLINE

l. Concurrent Kleene Alcerra

Il. CKA with osservations
[@; ll. Partially orservarle CKA

IV. CKA with rOxes

V. Conclusions

Paul Brunet

23/



LITMUS TEST: SEQUENTIAL CONSISTENCY

{r0==0&& r1 == 0 }

Inaredients:
x =1

r0 :=y

=1 .
y = Assianments x < 1
rl := x

= Opservations rp =0
{1 (r0==1 ||l r1==1)1}%}

Paul Brunet 24/



ALGEBRA OF OBSERVATIONS

What BoOlean alaekra can we et out of orservations of the shape ryp = 07

Paul Brunet 25/4H
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What is the specification of an assianwent v < n?
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ALGEBRA OF OBSERVATIONS

What BoOlean alaekra can we et out of orservations of the shape ryp = 07

Answeer: sets of memory states Var — Vao

What is the specification of an assianwent v < n?

Answer:

Z s- (v n)-s[ven].

sE€ State

Proelem: how do we execute those in parallel?

X
Yy

0
0

Paul Brunet

x <1

y<+1

X
W

[uy

25/



ALGEBRA OF OBSERVATIONS

Solution: Move to partial functions Var — VaL.

Paul Brunet 26/4



ALGEBRA OF OBSERVATIONS

Solution: Move to partial functions Var — Vac
Alcerraically: Boolean alaerra — Pseudo-complemented distrirutive lattice.
Same axioms as BA reaarding V, A, T, L, plus:

p<qg<pAg=_L.

Paul Brunet 26/4



CAUSALITY VS COMPOSITIONALITY

Paul Brunet

[y

y<+«1

27/



CAUSALITY VS COMPOSITIONALITY

Solution: we need to explicitly close the system.

Paul Brunet

[e] — [e] N CausalPomsets.

y<+«1

27/



CAUSALITY VS COMPOSITIONALITY

y<+«1

Solution: we need to explicitly close the system.

[e] — [e] N CausalPomsets.

Litmus test:
t=(n=0An=0)-(x<1rn<y||(yel-n<x) (n=1VrnVi)

[t] N CausalPomsets = ()

Paul Brunet 27/



OUTLINE

l. Concurrent Kleene Alcerra

Il. CKA with osservations

ll. Partially orservarle CKA
@& V. CKA with rOxes

V. Conclusions

Paul Brunet
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MUTUAL EXCLUSION

print (counter) ;

X:=counter; y:=counter;
YR8l 3 VRELS
counter:=x; counter:=y;

print (counter) ;

Paul Brunet

/\

== —— e, ——> Ay

=y —> A, ——> 4y
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MUTUAL EXCLUSION

print (counter) ;

X:=counter; y:=counter; - =y ——> oA, —— Ay
xX:=x+1; VRELS \%\ =
counter:=x; counter:=y; =y —— ) —— Ay

print (counter) ;
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MUTUAL EXCLUSION

print (counter) ;

X:=counter; y:=counter; - =y ——> oA, —— Ay
xX:=x+1; VRELS \%\ /,é
counter:=x; counter:=y; =y —— ) —— Ay

print (counter) ;
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MUTUAL EXCLUSION
print (counter) ;
atomic{ atomic{
xiicour.lter; yficouz'lter; - =y ——> oA, —— Ay
x:=x+1; VRS L Q]\
counter:=x; counter:=y; e e e e
} ¥
print (counter) ;
= ==y dx “ax e‘ay dy Q}'Y =y
== 'ﬁy dx dy &y &

Paul Brunet
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d;

}

MUTUAL EXCLUSION
print (counter) ;
atomic{ atomic{
X:=counter; y:=counter; | o —> oy ——> 4y |
X:=x+1; yi=y+1; \%< >é
counter:=x; counter:=y; [ =y ——> oy —— & ]
print (counter) ;
= == dx #x e.ay ﬂy 2‘1)/ =
== 'ﬂéy ﬂx Iﬁ‘ly &y ély =
29/
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MUTUAL EXCLUSION
print (counter) ;
atomic{ atomic{
X:=counter; y:=counter; | ox ——> oAy ——> Ay |
X:=x+1; yi=y+1; \%< >é
counter:=x; counter:=y; [y —— o) —— 4y ]
} i
print (counter) ;
= ==y [ #ay ==y e, #y, =
> =Ry =, > [ Zay > =
29/
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POMSETS WITH BOXES

4:b

47 d —>8:d

1/

il e

\

lareling function
finite set of events \ / cEp — A
Ap

P = (Ep, <p, )

partial order ~—/

CEp X Ep
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POMSETS WITH BOXES

/ \L5:C \
d— >8]
4*7 RN

1:a 6:c

\/

lareling function
finite set of events cEp > A

P = (Ep,<p,Ap, Bp)

partial order ~—/ \ set of roOxes

C Ep x Ep C P7P (Ep)

Paul Brunet 30/



CHARACTERISATION OF SP-POMSETS WITH BOXES

Question
What pomsets can Be Built with the sianature (A, - |,[-])?
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CHARACTERISATION OF SP-POMSETS WITH BOXES

Question
What pomsets can Be Built with the sianature (A, - |,[-])?

Those that do not include the following patterns:

\
N /
A

Paul Brunet 3l/4H



AXIOMATISATION OF ISOMORPHISM

BSP
BSP +

BSP +
BSP +
BSP +

BSP
BSP

PIQIR)=(PIQ@IR

Plle=QlP
Pll1=1P
[1]=1
[[P]] = [P]

Theorem

P=Q<& BSPFP=Q.

Paul Brunet
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AXIOMATISATION OF ISOMORPHISM

BSP
BSP +

BSP +
BSP +
BSP +

BSP
BSP

PIQIR)=(PIQ@IR

Plle=QlP
Pll1=1P
[1]=1
[[P]] = [P]

Theorem

P=Q<& BSPFP=Q.
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SUBSUMPTION WITH BOXES

4:b
7
2388
S
o, 5:c
>
7:d—>8:d
7 a\ \ 7 §A
1:a—>3:b\ 5:c—>6:c = 1:a Gr@
7:d 7 \ /
T>8:d

P C Q when there is 8 homomorphism £rom @ to P, ie. a Bijective map
@ Eg = Ep such that

N Apop=Ag
» p(<qQ) C<p
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SUBSUMPTION WITH BOXES

4:b
—T
2388
\L
4:b 4 £F \
—T N
4 c@ ——= 3
’/’72 a\‘ N /—77d 8d\§
o5 —>8:/y 5:cH—>6:cC = 1:a Gr@
~L
7 d\) // \ /
8:d
3:b

P C Q when there is 8 homomorphism £rom @ to P, ie. a Bijective map
@ Eg = Ep such that

N Apop=Ag
» (<) C<Zp
» ¢ (Bp) C Be

Paul Brunet 33/



AXIOMATISATION OF SUBSUMPTION

BSPc - (P Q) (RIIS)E(P:R) [ (Q:S)

Theorem

PC Q& BSP-HPLCQ.
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AXIOMATISATION OF SUBSUMPTION

BSPc - (P Q) (RIIS)E(P:R) [ (Q:S)

Theorem

PC Q& BSP-HPLCQ.
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MutuaL excrusion (1)

print (counter) ;
atomic{

atomicq{
X:=counter; y:=counter; | = —> A, ——> Ay |
. i —_ _ — T _
x:=x+1; y:i=y+l; = =
\h —/7
counter:=x; counter:=y; =y —— ) —— 4y
} }
print (counter) ;

Breakinag mutual exclusion <+ admitting an execution with the

following “pattern” 5 5 4,

Paul Brunet
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POMSET LOGIC

=1L | a| eV | oA | ot | oxv | [@] | (¢

w PEopy iff 3P, Py such that PO Py - P, and Py =@ and P E 9
@ Pl Xt i88 P, Py such that PO Py || Prand Py = and P E 9
® P [p] i£48 3Q such that P J[Q] and Q E ¢

® P (p) i£8 IP',Q such that PO P and P/ » Q and Q | .

Theorem
PIQ&Vy, (PEp=QEp).

Paul Brunet 36/




MutuaL excrusion (Il)

print (counter) ;

atomic{ atomic{
X:=counter; y:=counter; | o ——> ey ——> A
o . - . — T~ _
X:=x+1; 8=yl 8 =
\‘ ) —/7
counter:=x; counter:=y; =y —— ) —— 4y
} }

print (counter) ;

Breakinag mutual exclusion <+ admitting an execution with the
following "pattern” 5 5 4,

><

~ PE (]()g'éx*e'éy)b(énx*;.y)b -

Paul Brunet 3/



OUTLINE

l. Concurrent Kleene Alaerra
Il. CKA with orservations
ll. Partially orservarle CKA

IV. CKA with roxes

W V. Conclusions
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ALGEBRAS WITH HYPOTHESES

= Doumane, Kupereera, Pous, < Pradic, "Kleene Alcerra with Hypotheses”,
FoSSaCs 9.
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ALGEBRAS WITH HYPOTHESES

= Doumane, Kupereera, Pous, < Pradic, "Kleene Alcerra with Hypotheses”,
FoSSaCs 9.

= Kappé, B Silva, Waaemaker, ¢ Zanasi, "Concurrent Kleene Alaerra with
Oeservations: from Hypotheses to Completeness”, FoSSaCS 2.0.
= CKA with Boxes and hypotheses?

All proofs had to re re-done £rom scratch.

Can we do retter?

Paul Brunet 39/



LOGICS OF BEHAVIOUR

= Traditional approaches tO proaram loaic rely on states
eq. Hennessy-Milner Loaie, (Propositional) Dynamic Loaic.
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LOGICS OF BEHAVIOUR

= Traditional approaches tO proaram loaic rely on states
eq. Hennessy-Milner Loaie, (Propositional) Dynamic Loaic.
= Pomset loaic relies on an aestract notion of "eehaviour” instead.

What does it mean?

We have the hanmmer, where is the nail?

Paul Brunet 4O/



THAT’S ALL FOLKS!

Thank you!

See more at:
http://paul.brunet-zamansky.fr

Paul Brunet H/eH
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