On Decidability of
 Concurrent Kleene Algebra

CONCUR in Berlin - September 5-8, 2017

Paul Brunet, Damien Pous, and Georg Struth

University College London
ENS de Lyon - CNRS
University of Sheffield

The
University
Of
Sheffield.

Concurrent Kleene Algebra

$$
e, f::=0|1| a|e+f| e \cdot f \mid e^{\star}
$$

- Kleene algebra: rational expressions.
- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.

Concurrent Kleene Algebra

$$
e, f::=0|1| a|e+f| e \cdot f\left|e^{\star}\right| e \| f
$$

- Kleene algebra: rational expressions.
- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- bi-Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs.
- Canonical model: pomset languages i.e. sets of partially ordered words.

Laurence \& Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

Concurrent Kleene Algebra

$$
e, f::=0|1| a|e+f| e \cdot f\left|e^{\star}\right| e \| f
$$

- Kleene algebra: rational expressions.
- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- bi-Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs.
- Canonical model: pomset languages i.e. sets of partially ordered words.

Laurence \& Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

- Concurrent Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs with a refinement order.
- "Canonical" model: downwards-closed pomset languages.

Hoare, Möller, Struth \& Wehrman, Concurrent Kleene algebra and its foundations, 2011

Concurrent Kleene Algebra

$$
e, f::=0|1| a|e+f| e \cdot f\left|e^{\star}\right| e \| f
$$

- Kleene algebra: rational expressions.
- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- Decision procedure: equivalence of finite state automata.
- bi-Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs.
- Canonical model: pomset languages i.e. sets of partially ordered words.

Laurence \& Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

- Concurrent Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs with a refinement order.
- "Canonical" model: downwards-closed pomset languages.

Hoare, Möller, Struth \& Wehrman, Concurrent Kleene algebra and its foundations, 2011

Concurrent Kleene Algebra

$$
e, f::=0|1| a|e+f| e \cdot f\left|e^{\star}\right| e \| f
$$

- Kleene algebra: rational expressions.
- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- Decision procedure: equivalence of finite state automata.
- bi-Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs.
- Canonical model: pomset languages i.e. sets of partially ordered words.
- Decision procedure: equivalence of Petri nets.

Laurence \& Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

- Concurrent Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs with a refinement order.
- "Canonical" model: downwards-closed pomset languages.

Hoare, Möller, Struth \& Wehrman, Concurrent Kleene algebra and its foundations, 2011

Concurrent Kleene Algebra

$$
e, f::=0|1| a|e+f| e \cdot f\left|e^{\star}\right| e \| f
$$

- Kleene algebra: rational expressions.
- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- Decision procedure: equivalence of finite state automata.
- bi-Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs.
- Canonical model: pomset languages i.e. sets of partially ordered words.
- Decision procedure: equivalence of Petri nets.

Laurence \& Struth, Completeness theorems for bi-Kleene algebras and series-parallel
rational pomset languages, 2014

- Concurrent Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs with a refinement order.
- "Canonical" model: downwards-closed pomset languages.
- Decision procedure: containment of Petri nets.

Hoare, Möller, Struth \& Wehrman, Concurrent Kleene algebra and its foundations, 2011

Concurrent Kleene Algebra

$$
e, f::=0|1| a|e+f| e \cdot f\left|e^{\star}\right| e \| f
$$

- Kleene algebra: rational expressions.
- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- Decision procedure: equivalence of finite state automata.
- bi-Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs.
- Canonical model: pomset languages i.e. sets of partially ordered words.
- Decision procedure: equivalence of Petri nets.

Laurence \& Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

- Concurrent Kleene algebra: series-rational expressions.
- Can be used to reason about concurrent programs with a refinement order.
- "Canonical" model: downwards-closed pomset languages.
- Decision procedure: containment of Petri nets.

Hoare, Möller, Struth \& Wehrman, Concurrent Kleene algebra and its foundations, 2011

Outline

I. Pomsets

II. Petri Nets

III. Summary and Outlook

Outline

I. Pomsets

II. Petri Nets

III. Summary and Outlook

Let's visit London!

Let's visit London!

Let's visit London!

Let's visit London!

Pomsets products

Pomsets products

Pomsets products

Pomset order

Pomset order

Definition

$P_{1} \sqsubseteq P_{2}$ if there is a function $\varphi: P_{2} \rightarrow P_{1}$ such that:

1. φ is a bijection
2. φ preserves labels
3. φ preserves ordered pairs

Gischer, The equational theory of pomsets, 1988
Grabowski, On partial languages, 1981

Pomset order

Definition

$P_{1} \sqsubseteq P_{2}$ if there is a function $\varphi: P_{2} \rightarrow P_{1}$ such that:

1. φ is a bijection
2. φ preserves labels
3. φ preserves ordered pairs

Gischer, The equational theory of pomsets, 1988
Grabowski, On partial languages, 1981
Notation
$\sqsubseteq_{S}:=\left\{P \mid \exists P^{\prime} \in S: P \sqsubseteq P^{\prime}\right\}$.

Rational pomset languages

$$
e, f \in \mathbb{E}_{\Sigma}::=a|0| 1|e \cdot f| e \| f|e+f| e^{\star} .
$$

Rational pomset languages

$$
e, f \in \mathbb{E}_{\Sigma}::=a|0| 1|e \cdot f| e \| f|e+f| e^{\star} .
$$

$$
\begin{aligned}
& \llbracket a \rrbracket:=\left\{\begin{array}{l}
a \\
\end{array}\right\} \\
& \text { [0] : = } \\
& \llbracket e \cdot f \rrbracket:=\llbracket e \rrbracket \cdot \llbracket f \rrbracket \\
& \llbracket e^{*} \rrbracket:=\bigcup_{n \in \mathbb{N}} \llbracket e \rrbracket^{n}
\end{aligned}
$$

Rational pomset languages

$$
e, f \in \mathbb{E}_{\Sigma}::=a|0| 1|e \cdot f| e \| f|e+f| e^{\star} .
$$

$$
\begin{aligned}
& \llbracket a \rrbracket:=\left\{\begin{array}{c}
a \\
\end{array}\right\} \\
& \llbracket 0 \rrbracket:=\emptyset \\
& \llbracket e \cdot f \rrbracket:=\llbracket e \rrbracket \cdot \llbracket f \rrbracket \\
& \llbracket e^{\star} \rrbracket:=\bigcup_{n \in \mathbb{N}} \llbracket e \rrbracket^{n}
\end{aligned}
$$

Definition

A set of pomsets S is called a rational pomset language if there is an expression $e \in \mathbb{E}_{\Sigma}$ such that $S=\llbracket e \rrbracket$.

Two decision problems

biKA

Given two expressions e, f, are $\llbracket e \rrbracket$ and $\llbracket f \rrbracket$ equal?

CKA

Given two expressions e, f, are ${ }^{\sqsubseteq} \llbracket e \rrbracket$ and ${ }^{\sqsubseteq} \llbracket f \rrbracket$ equal?

Outline

I. Pomsets

II. Petri Nets

III. Summary and Outlook

Labelled Petri nets

Labelled Petri nets

Labelled Petri nets

Labelled Petri nets

Labelled Petri nets

(T)

Labelled Petri nets

Labelled Petri nets

Labelled Petri nets

Labelled Petri nets

Pomset-trace

Recognisable pomset languages

Language generated by a net

$\llbracket \mathcal{N} \rrbracket$ is the set of pomset-traces of accepting runs of \mathcal{N}.

Definition
 A set of pomsets S is a recognisable pomset language if there is a net \mathcal{N} such that $S=\llbracket \mathcal{N} \rrbracket$.

From expressions to automata

$$
\mathcal{N}(0):=\rightarrow \quad \mathrm{O} \rightarrow \quad \mathcal{N}(1):=\rightarrow \mathrm{O} \quad \mathcal{N}(a):=\rightarrow \mathrm{O} \rightarrow \square \mathrm{O} \rightarrow
$$

$$
\mathcal{N}\left(e_{1}+e_{2}\right):=\rightarrow \text { (1) }
$$

$$
\mathcal{N}\left(e_{1} \| e_{2}\right):=\longrightarrow \text { C }
$$

$$
\mathcal{N}\left(e_{1} \cdot e_{2}\right):=\rightarrow\left(A_{1}\right) \quad e_{1} \longrightarrow\left(f_{1}\right) \longrightarrow
$$

Solving biKA

Lemma

$$
\llbracket e \rrbracket=\llbracket \mathcal{N}(e) \rrbracket .
$$

Corollary

Rational pomset languages are recognisable.

Solving biKA

Lemma

$$
\llbracket e \rrbracket=\llbracket \mathcal{N}(e) \rrbracket .
$$

Corollary

Rational pomset languages are recognisable.

Theorem

Testing containment of pomset-trace languages of two Petri nets is an ExpSpace-complete problem.

Jategaonkar \& Meyer, Deciding true concurrency equivalences on safe, finite nets, 1996

Corollary

The problem biKA lies in the class ExpSpace.

What about CKA?

What about CKA?

$$
\sqsubseteq_{\llbracket e \rrbracket}=\sqsubseteq_{\llbracket f \rrbracket} \Leftrightarrow \sqsubseteq_{\llbracket e \rrbracket} \subseteq \sqsubseteq_{\llbracket f \rrbracket} \wedge \sqsubseteq_{\llbracket e \rrbracket} \supseteq \sqsubseteq_{\llbracket f \rrbracket}
$$

What about CKA?

What about CKA?

$$
\begin{aligned}
& \Leftrightarrow[\mathcal{N}(e)] \subseteq \subseteq[\mathcal{N}(f)] \wedge \subseteq[\mathcal{N}(e)] \supseteq[\mathcal{N}(f) \rrbracket
\end{aligned}
$$

What about CKA?

$$
\begin{aligned}
& \Leftrightarrow \llbracket \mathcal{N}(e) \rrbracket \subseteq \sqsubseteq_{\llbracket \mathcal{N}(f) \rrbracket \wedge}{ }_{\square} \mathbb{N}(e) \rrbracket \supseteq \llbracket \mathcal{N}(f) \rrbracket
\end{aligned}
$$

Problem

Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ be well behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P o m}\left(R_{2}\right) ?
$$

Idea of the algorithm

Problem

Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ be well behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P o m}\left(R_{2}\right) ?
$$

Idea of the algorithm

Problem

Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ be well behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P o m}\left(R_{2}\right) ?
$$

- build an automaton \mathscr{A}_{1} for $\llbracket \mathcal{N}_{1} \rrbracket$

Idea of the algorithm

Problem

Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ be well behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P o m}\left(R_{2}\right) ?
$$

- build an automaton \mathscr{A}_{1} for $\llbracket \mathcal{N}_{1} \rrbracket$
- build an automaton \mathscr{A}_{2} for $\llbracket \mathcal{N}_{1} \rrbracket \cap \sqsubseteq \llbracket \mathcal{N}_{2} \rrbracket$

Idea of the algorithm

Problem

Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ be well behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P o m}\left(R_{2}\right) ?
$$

- build an automaton \mathscr{A}_{1} for $\llbracket \mathcal{N}_{1} \rrbracket$
- build an automaton \mathscr{A}_{2} for $\llbracket \mathcal{N}_{1} \rrbracket \cap \subseteq \mathcal{N}_{2} \rrbracket$
- $\llbracket \mathcal{N}_{1} \rrbracket \subseteq \sqsubseteq \llbracket \mathcal{N}_{2} \rrbracket$ if and only if $\mathcal{L}\left(\mathscr{A}_{1}\right)=\mathcal{L}\left(\mathscr{A}_{2}\right)$.

Transition automaton

Transition automaton

Massaging runs

$$
\begin{aligned}
& \begin{array}{cc}
\hline a \\
& \\
b \\
c \\
\vdots \\
\vdots \\
\vdots \\
a \\
c & \\
c
\end{array}
\end{aligned}
$$

Massaging runs

$$
\begin{aligned}
& \begin{array}{c}
a \\
b \\
c \\
\vdots \\
\vdots \\
\vdots \\
c \\
c
\end{array}
\end{aligned}
$$

Massaging runs

$$
\begin{aligned}
& -(\mathbb{R}
\end{aligned}
$$

Massaging runs

Massaging runs

Massaging runs

Reduction to automata

Let \mathcal{N}_{1} and \mathcal{N}_{2} be some polite nets, of size n, m.

Lemma

There is an automaton $\mathscr{A}\left(\mathcal{N}_{1}\right)$ with $\mathcal{O}\left(2^{n}\right)$ states that recognises the set of accepting runs in \mathcal{N}_{1}.

Reduction to automata

Let \mathcal{N}_{1} and \mathcal{N}_{2} be some polite nets, of size n, m.
Lemma
There is an automaton $\mathscr{A}\left(\mathcal{N}_{1}\right)$ with $\mathcal{O}\left(2^{n}\right)$ states that recognises the set of accepting runs in \mathcal{N}_{1}.

Lemma

There is an automaton $\mathcal{N}_{1} \prec \mathcal{N}_{2}$ with $\mathcal{O}\left(2^{n+m+n m}\right)$ states that recognises the set of accepting runs in \mathcal{N}_{1} whose pomset belongs to ${ }^{〔} \llbracket \mathcal{N}_{2} \rrbracket$.

Outline

I. Pomsets

II. Petri Nets
III. Summary and Outlook

Main result

Theorem

Given two expressions e, $f \in \mathbb{E}_{\Sigma}$, we can test if $\llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket$ in ExpSpace.

Proof.

1. build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
2. build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
3. compare them.

Main result

Theorem

Given two expressions e, $f \in \mathbb{E}_{\Sigma}$, we can test if $\llbracket e \rrbracket \subseteq \subseteq \llbracket f \rrbracket$ in ExpSpace.

Proof.

1. build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
2. build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
3. compare them.

Theorem

The problem CKA is ExpSpace-complete.

Proof.

1. In the class ExpSpace: see above.
2. ExpSpace-hard: Reduction from the universality problem for regular expressions with interleaving.

Mayer \& Stockmeyer, The complexity of word problems - this time with interleaving, 1994

To sum up

Done:

To do:

To sum up

Done:

- Reduction of biKA and CKA to Petri nets.

To do:

To sum up

Done:

- Reduction of biKA and CKA to Petri nets.
- New automaton-like semantics for Petri nets.

To do:

To sum up

Done:

- Reduction of biKA and CKA to Petri nets.
- New automaton-like semantics for Petri nets.
- biKA is ExpSpace-solvable.

To do:

To sum up

Done:

- Reduction of biKA and CKA to Petri nets.
- New automaton-like semantics for Petri nets.
- biKA is ExpSpace-solvable.
- CKA is ExpSpace-complete.

To do:

To sum up

Done:

- Reduction of biKA and CKA to Petri nets.
- New automaton-like semantics for Petri nets.
- biKA is ExpSpace-solvable.
- CKA is ExpSpace-complete.

To do:

- Extend the algorithm to a larger class of Petri nets.

To sum up

Done:

- Reduction of biKA and CKA to Petri nets.
- New automaton-like semantics for Petri nets.
- biKA is ExpSpace-solvable.
- CKA is ExpSpace-complete.

To do:

- Extend the algorithm to a larger class of Petri nets.
- Add tests because they're useful!

To sum up

Done:

- Reduction of biKA and CKA to Petri nets.
- New automaton-like semantics for Petri nets.
- biKA is ExpSpace-solvable.
- CKA is ExpSpace-complete.

To do:

- Extend the algorithm to a larger class of Petri nets.
- Add tests because they're useful!
- Add names because they're fun!

To sum up

Done:

- Reduction of biKA and CKA to Petri nets.
- New automaton-like semantics for Petri nets.
- biKA is ExpSpace-solvable.
- CKA is ExpSpace-complete.

To do:

- Extend the algorithm to a larger class of Petri nets.
- Add tests because they're useful!
- Add names because they're fun!
- Insert you favourite operator here...

That's all folks!

Thank you!

See more at:
http://paul.brunet-zamansky.fr

Outline

I. Pomsets

II. Petri Nets

III. Summary and Outlook

