On Decidability of Concurrent Kleene Algebra

CONCUR in Berlin - September 5-8, 2017

Paul Brunet, Damien Pous, and Georg Struth

University College London ENS de Lyon – CNRS University of Sheffield

The University Of Sheffield.

$$e, f \coloneqq = 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^{\star}$$

► Kleene algebra: rational expressions.

- Can be used to reason about sequential programs.
- Canonical model: regular languages, *i.e.* sets of words.

 $e, f ::= 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^* \mid e \mid f$

Kleene algebra: rational expressions.

- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- bi-Kleene algebra: series-rational expressions.
 - Can be used to reason about concurrent programs.
 - Canonical model: pomset languages *i.e.* sets of partially ordered words.

Laurence & Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

 $e, f ::= 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^* \mid e \mid f$

Kleene algebra: rational expressions.

- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- bi-Kleene algebra: series-rational expressions.
 - Can be used to reason about concurrent programs.
 - Canonical model: pomset languages *i.e.* sets of partially ordered words.

Laurence & Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

- Concurrent Kleene algebra: series-rational expressions.
 - Can be used to reason about concurrent programs with a refinement order.
 - "Canonical" model: downwards-closed pomset languages.

 $e, f ::= 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^* \mid e \mid f$

► Kleene algebra: rational expressions.

- Can be used to reason about sequential programs.
- Canonical model: regular languages, *i.e.* sets of words.
- Decision procedure: equivalence of finite state automata.
- bi-Kleene algebra: series-rational expressions.
 - Can be used to reason about concurrent programs.
 - Canonical model: pomset languages *i.e.* sets of partially ordered words.

Laurence & Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

- Concurrent Kleene algebra: series-rational expressions.
 - Can be used to reason about concurrent programs with a refinement order.
 - "Canonical" model: downwards-closed pomset languages.

 $e, f ::= 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^* \mid e \mid f$

► Kleene algebra: rational expressions.

- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- Decision procedure: equivalence of finite state automata.
- bi-Kleene algebra: series-rational expressions.
 - Can be used to reason about concurrent programs.
 - Canonical model: pomset languages *i.e.* sets of partially ordered words.
 - Decision procedure: equivalence of Petri nets.

Laurence & Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

- **Concurrent Kleene algebra**: series-rational expressions.
 - Can be used to reason about concurrent programs with a refinement order.
 - "Canonical" model: downwards-closed pomset languages.

 $e, f ::= 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^* \mid e \mid f$

► Kleene algebra: rational expressions.

- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- Decision procedure: equivalence of finite state automata.
- bi-Kleene algebra: series-rational expressions.
 - Can be used to reason about concurrent programs.
 - Canonical model: pomset languages *i.e.* sets of partially ordered words.
 - Decision procedure: equivalence of Petri nets.

Laurence & Struth, Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages, 2014

- **Concurrent Kleene algebra**: series-rational expressions.
 - Can be used to reason about concurrent programs with a refinement order.
 - "Canonical" model: downwards-closed pomset languages.
 - Decision procedure: containment of Petri nets.

 $e, f ::= 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^* \mid e \parallel f$

• Kleene algebra: rational expressions.

- Can be used to reason about sequential programs.
- Canonical model: regular languages, i.e. sets of words.
- Decision procedure: equivalence of finite state automata.
- bi-Kleene algebra: series-rational expressions.
 - Can be used to reason about concurrent programs.
 - Canonical model: pomset languages *i.e.* sets of partially ordered words.
 - Decision procedure: equivalence of Petri nets.

 $\mathcal F$ Laurence & Struth, Completeness theorems for bi-Kleene algebras and series-parallel

rational pomset languages, 2014

- Concurrent Kleene algebra: series-rational expressions.
 - Can be used to reason about **concurrent** programs with a **refinement** order.
 - "Canonical" model: downwards-closed pomset languages.
 - Decision procedure: containment of Petri nets.

Outline

I. Pomsets

II. Petri Nets

III. Summary and Outlook

Outline

I. Pomsets

II. Petri Nets

III. Summary and Outlook

Pomsets products

Pomsets products

Pomsets products

 $P_1 \parallel P_2 =$

Brunet, Pous, & Struth

Pomset order

Pomset order

Definition

- $P_1 \sqsubseteq P_2$ if there is a function $\varphi : P_2 \rightarrow P_1$ such that:
 - 1. φ is a bijection
 - 2. φ preserves labels
 - 3. φ preserves ordered pairs

Gischer, **The equational theory of pomsets**, *1988* Grabowski, **On partial languages**, *1981*

Pomset order

Definition

- $P_1 \sqsubseteq P_2$ if there is a function $\varphi : P_2 \rightarrow P_1$ such that:
 - 1. φ is a bijection
 - 2. φ preserves labels
 - 3. φ preserves ordered pairs

Gischer, **The equational theory of pomsets**, *1988* Grabowski, **On partial languages**, *1981*

Notation

$${}^{\sqsubseteq}S := \{P \mid \exists P' \in S : P \sqsubseteq P'\}.$$

Rational pomset languages

$$e, f \in \mathbb{E}_{\Sigma} ::= a \mid 0 \mid 1 \mid e \cdot f \mid e \parallel f \mid e + f \mid e^{\star}.$$

Rational pomset languages

$$e, f \in \mathbb{E}_{\Sigma} ::= a \mid 0 \mid 1 \mid e \cdot f \mid e \parallel f \mid e + f \mid e^{\star}.$$

$$\begin{bmatrix} a \end{bmatrix} \coloneqq \left\{ \begin{array}{c} a \\ \\ \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \coloneqq \emptyset \\ \begin{bmatrix} e \cdot f \end{bmatrix} \coloneqq \begin{bmatrix} e \end{bmatrix} \cdot \begin{bmatrix} f \end{bmatrix} \\ \\ \begin{bmatrix} e^* \end{bmatrix} \coloneqq \bigcup_{n \in \mathbb{N}} \begin{bmatrix} e \end{bmatrix}^n \\ \end{bmatrix}$$

Rational pomset languages

$$e, f \in \mathbb{E}_{\Sigma} ::= a \mid 0 \mid 1 \mid e \cdot f \mid e \parallel f \mid e + f \mid e^{\star}.$$

Definition

A set of pomsets *S* is called a **rational pomset language** if there is an expression $e \in \mathbb{E}_{\Sigma}$ such that $S = \llbracket e \rrbracket$.

Brunet, Pous, & Struth

Concurrent Kleene Algebra

Two decision problems

biKA

Given two expressions e, f, are $\llbracket e \rrbracket$ and $\llbracket f \rrbracket$ equal?

CKA

Given two expressions e, f, are $\sqsubseteq [e]$ and $\sqsubseteq [f]$ equal?

Outline

I. Pomsets

II. Petri Nets

III. Summary and Outlook

T

Petri Nets

Labelled Petri nets

T

Transition-pomset

Brunet,	Pous,	&	Strut	h
---------	-------	---	-------	---

Transition-pomset

Brunet,	Pous,	&	Stru	th
---------	-------	---	------	----

Recognisable pomset languages

Language generated by a net

 $[\![\mathcal{N}]\!]$ is the set of pomset-traces of accepting runs of $\mathcal{N}.$

Definition

A set of pomsets S is a **recognisable pomset language** if there is a net \mathcal{N} such that $S = \llbracket \mathcal{N} \rrbracket$.

From expressions to automata $\mathcal{N}(1) := \rightarrow \mathbf{O} \longrightarrow \qquad \mathcal{N}(a) := \rightarrow \mathbf{O} \longrightarrow a$ $\mathcal{N}(0) := \rightarrow \mathbf{O} \quad \mathbf{O} \rightarrow$ e_1 $\mathcal{N}(e_1+e_2) \coloneqq$ e₂ e_1 $\mathcal{N}(e_1 \parallel e_2) \coloneqq \longrightarrow$ e_2 $\mathcal{N}(e_1 \cdot e_2) := \longrightarrow (\iota_1)$ e_1 f_1 (ι_2) e_2 $\mathcal{N}(e^{\star}) \coloneqq$ е

Petri Nets

Solving biKA

Lemma

$$\llbracket e \rrbracket = \llbracket \mathcal{N}(e) \rrbracket.$$

Corollary

Rational pomset languages are recognisable.

Solving biKA

Lemma

$$[\![e]\!] = [\![\mathcal{N}(e)]\!].$$

Corollary

Rational pomset languages are recognisable.

Theorem

Testing containment of pomset-trace languages of two Petri nets is an **ExpSpace**-complete problem.

Jategaonkar & Meyer, Deciding true concurrency equivalences on safe, finite nets, 1996

Corollary

The problem biKA lies in the class **ExpSpace**.

$${}^{\sqsubseteq}\llbracket e \rrbracket = {}^{\sqsubseteq}\llbracket f \rrbracket$$

$$\begin{split} & {}^{\sqsubseteq}\llbracket e\rrbracket = {}^{\sqsubseteq}\llbracket f\rrbracket \Leftrightarrow {}^{\sqsubset}\llbracket e\rrbracket \subseteq {}^{\sqsubseteq}\llbracket f\rrbracket \land {}^{\backsim}\amalg e\rrbracket \supseteq {}^{\sqsubseteq}\llbracket f\rrbracket \\ \Leftrightarrow {}^{\amalg}\llbracket e\rrbracket \subseteq {}^{\sqsubseteq}\llbracket f\rrbracket \land {}^{\backsim}\amalg e\rrbracket \supseteq {}^{\varPi}\llbracket f\rrbracket \\ \Leftrightarrow {}^{\blacksquare}\llbracket \mathcal{N}(e)\rrbracket \subseteq {}^{\sqsubseteq}\llbracket \mathcal{N}(f)\rrbracket \land {}^{\sqsubseteq}\llbracket \mathcal{N}(e)\rrbracket \supseteq {}^{\blacksquare}\mathcal{N}(f)\rrbracket \end{split}$$

$$\begin{split} & \sqsubseteq \llbracket e \rrbracket = \ulcorner \llbracket f \rrbracket \Leftrightarrow ~ \ulcorner \llbracket e \rrbracket \subseteq \ulcorner \llbracket f \rrbracket ~ \land ~ \ulcorner \llbracket e \rrbracket \supseteq \ulcorner \llbracket f \rrbracket \\ & \Leftrightarrow ~ \llbracket e \rrbracket \subseteq \ulcorner \llbracket f \rrbracket ~ \land ~ \ulcorner \llbracket e \rrbracket \supseteq \llbracket f \rrbracket \\ & \Leftrightarrow ~ \llbracket \mathcal{N}(e) \rrbracket \subseteq \ulcorner \llbracket \mathcal{N}(f) \rrbracket \land \ulcorner \llbracket \mathcal{N}(e) \rrbracket \supseteq \llbracket \mathcal{N}(f) \rrbracket \end{split}$$

Problem

Let $\mathcal{N}_1, \mathcal{N}_2$ be well behaved nets. Is it true that for every run R_1 of \mathcal{N}_1 there is a run R_2 in \mathcal{N}_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)?$

Problem

Let N_1, N_2 be well behaved nets. Is it true that for every run R_1 of N_1 there is a run R_2 in N_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)?$

Problem

Let N_1, N_2 be well behaved nets. Is it true that for every run R_1 of N_1 there is a run R_2 in N_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)?$

• build an automaton \mathscr{A}_1 for $\llbracket \mathcal{N}_1 \rrbracket$

Problem

Let N_1, N_2 be well behaved nets. Is it true that for every run R_1 of N_1 there is a run R_2 in N_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)?$

- build an automaton \mathscr{A}_1 for $\llbracket \mathcal{N}_1 \rrbracket$
- ▶ build an automaton \mathscr{A}_2 for $\llbracket \mathcal{N}_1 \rrbracket \cap {}^{\sqsubseteq} \llbracket \mathcal{N}_2 \rrbracket$

Problem

Let N_1, N_2 be well behaved nets. Is it true that for every run R_1 of N_1 there is a run R_2 in N_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)?$

- build an automaton \mathscr{A}_1 for $\llbracket \mathcal{N}_1 \rrbracket$
- ▶ build an automaton \mathscr{A}_2 for $\llbracket \mathcal{N}_1 \rrbracket \cap {}^{\sqsubseteq} \llbracket \mathcal{N}_2 \rrbracket$
- $\llbracket \mathcal{N}_1 \rrbracket \subseteq \llbracket \llbracket \mathcal{N}_2 \rrbracket$ if and only if $\mathcal{L}(\mathscr{A}_1) = \mathcal{L}(\mathscr{A}_2)$.

Transition automaton

Transition automaton

Petri Nets

Petri Nets

Reduction to automata

Let \mathcal{N}_1 and \mathcal{N}_2 be some polite nets, of size n, m.

Lemma

There is an automaton $\mathscr{A}(\mathcal{N}_1)$ with $\mathcal{O}(2^n)$ states that recognises the set of accepting runs in \mathcal{N}_1 .

Reduction to automata

Let \mathcal{N}_1 and \mathcal{N}_2 be some polite nets, of size n, m.

Lemma

There is an automaton $\mathscr{A}(\mathcal{N}_1)$ with $\mathcal{O}(2^n)$ states that recognises the set of accepting runs in \mathcal{N}_1 .

Lemma

There is an automaton $\mathcal{N}_1 \prec \mathcal{N}_2$ with $\mathcal{O}(2^{n+m+nm})$ states that recognises the set of accepting runs in \mathcal{N}_1 whose pomset belongs to $\llbracket[\mathcal{N}_2]]$.

Outline

I. Pomsets

II. Petri Nets

III. Summary and Outlook

Main result

Theorem

Given two expressions $e, f \in \mathbb{E}_{\Sigma}$, we can test if $\llbracket e \rrbracket \subseteq {}^{\sqsubseteq} \llbracket f \rrbracket$ in **ExpSpace**.

Proof.

- 1. build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
- 2. build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
- 3. compare them.

Main result

Theorem

Given two expressions $e, f \in \mathbb{E}_{\Sigma}$, we can test if $\llbracket e \rrbracket \subseteq \llbracket f \rrbracket$ in **ExpSpace**.

Proof.

- 1. build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
- 2. build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
- 3. compare them.

Theorem

The problem CKA is **ExpSpace**-complete.

Proof.

- 1. In the class **ExpSpace**: see above.
- 2. **ExpSpace**-hard: Reduction from the universality problem for regular expressions with interleaving.

Mayer & Stockmeyer, The complexity of word problems – this time with interleaving, 1994 \Box

Done:

Done:

▶ Reduction of biKA and CKA to Petri nets.

Done:

- ▶ Reduction of biKA and CKA to Petri nets.
- ► New automaton-like **semantics** for Petri nets.

Done:

- Reduction of biKA and CKA to **Petri nets**.
- ► New automaton-like **semantics** for Petri nets.
- biKA is **ExpSpace-solvable**.

Done:

- ▶ Reduction of biKA and CKA to Petri nets.
- ► New automaton-like **semantics** for Petri nets.
- biKA is **ExpSpace-solvable**.
- CKA is **ExpSpace-complete**.

Done:

- ▶ Reduction of biKA and CKA to Petri nets.
- ► New automaton-like **semantics** for Petri nets.
- biKA is **ExpSpace-solvable**.
- CKA is **ExpSpace-complete**.

To do:

• Extend the algorithm to a larger class of Petri nets.

Done:

- ▶ Reduction of biKA and CKA to Petri nets.
- ► New automaton-like **semantics** for Petri nets.
- biKA is **ExpSpace-solvable**.
- CKA is **ExpSpace-complete**.

- Extend the algorithm to a larger class of Petri nets.
- Add tests because they're useful!

Done:

- ▶ Reduction of biKA and CKA to Petri nets.
- ► New automaton-like **semantics** for Petri nets.
- biKA is **ExpSpace-solvable**.
- CKA is **ExpSpace-complete**.

- Extend the algorithm to a larger class of Petri nets.
- Add tests because they're useful!
- Add names because they're fun!

Done:

- ▶ Reduction of biKA and CKA to Petri nets.
- ► New automaton-like **semantics** for Petri nets.
- biKA is **ExpSpace-solvable**.
- CKA is **ExpSpace-complete**.

- Extend the algorithm to a larger class of Petri nets.
- Add tests because they're useful!
- Add names because they're fun!
- Insert you favourite operator here...

That's all folks!

Thank you!

See more at: http://paul.brunet-zamansky.fr

Outline

I. Pomsets

II. Petri Nets

III. Summary and Outlook