Decidability of Identity-free Kleene Lattices

Talk at the LAC meeting

Paul Brunet & Damien Pous

Plume team - LIP, CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon, UMR 5668

November 20th, 2014

Plan

- Introduction
 - Kleene Algebra
 - Kleene Lattices
- Graph languages
 - Ground terms
 - Regular expressions with intersection
- Petri Automata
 - Definition
 - Recognition by Petri automata
- Decision Procedure
- Conclusions

$$e, f \in \mathcal{R}eg_X := 0 \mid 1 \mid x \in X \mid e \cdot f \mid e \vee f \mid e^*$$

Interpretations

$$e, f \in \mathcal{R}eg_X := 0 \mid 1 \mid x \in X \mid e \cdot f \mid e \vee f \mid e^*$$

Interpretations

• languages : Σ a finite set, $\sigma: X \to \mathcal{P}(\Sigma^*)$, \emptyset , $\{\epsilon\}$, concatenation, union

Rationnal languages correspond to
$$[\![\]\!]: X \to \mathcal{P}(X^*)$$

 $x \mapsto \{x\}.$

$$e, f \in \mathcal{R}eg_X := 0 \mid 1 \mid x \in X \mid e \cdot f \mid e \vee f \mid e^*$$

Interpretations

- languages : Σ a finite set, $\sigma: X \to \mathcal{P}(\Sigma^*)$, \emptyset , $\{\epsilon\}$, concatenation, union
- relations: S an set, $\sigma: X \to \mathcal{P}(S \times S)$, \emptyset , Id_S, composition, union

Rationnal languages correspond to
$$[\![\]\!]: X \to \mathcal{P}(X^*)$$

 $x \mapsto \{x\}.$

$$e, f \in \mathcal{R}eg_X := 0 \mid 1 \mid x \in X \mid e \cdot f \mid e \vee f \mid e^*$$

Interpretations

- languages : Σ a finite set, $\sigma: X \to \mathcal{P}(\Sigma^*)$, \emptyset , $\{\epsilon\}$, concatenation, union
- relations: S an set, $\sigma: X \to \mathcal{P}(S \times S)$, \emptyset , Id_S, composition, union

Rationnal languages correspond to $[\![\]\!]: X \to \mathcal{P}(X^*)$ $x \mapsto \{x\}.$

Model equivalence

$$e,f\in\mathcal{R}eg_{X}$$

$$\textit{Rel} \models e = f \quad \text{ if } \quad \forall S, \forall \sigma : X \rightarrow \mathcal{P}\left(S \times S\right), \sigma(e) = \sigma(f)$$

Model equivalence

 $e, f \in \mathcal{R}eg_X$

$$Rel \models e = f \quad \text{if} \quad \forall S, \forall \sigma : X \rightarrow \mathcal{P}(S \times S), \sigma(e) = \sigma(f)$$

$$Rel \models e = f \iff \llbracket e \rrbracket = \llbracket f \rrbracket$$

Paul Brunet KL is decidable November 20th, 2014

Intersection

$$e, f \in \mathcal{R}eg_X^{\wedge} := 0 \mid 1 \mid x \in X \mid e \cdot f \mid e \wedge f \mid e \vee f \mid e^{\star}$$

Paul Brunet KL - is decidable November 20th, 2014

Intersection

$$e,f\in\mathcal{R}eg^{\wedge}_{X}\coloneqq \mathbb{0} \ | \ \mathbb{1} \ | \ x\in X \ | \ e\cdot f \ | \ e\wedge f \ | \ e\vee f \ | \ e^{\star}$$

$$Rel \models e = f \notin \llbracket e \rrbracket = \llbracket f \rrbracket$$

Example

$$\begin{bmatrix} a \wedge b \end{bmatrix} = \emptyset = \llbracket 0 \rrbracket \\
 \sigma(a) = \{(x, y), (y, z)\} \\
 \sigma(b) = \{(y, z), (z, t)\} \\
 \sigma(a \wedge b) = \{(y, z)\} \neq \emptyset = \sigma(0)$$

A different approach is needed.

Plan

- Introduction
 - Kleene Algebra
 - Kleene Lattices
- Graph languages
 - Ground terms
 - Regular expressions with intersection
- Petri Automata
 - Definition
 - Recognition by Petri automata
- Decision Procedure
- Conclusions

$$u, v \in \mathcal{W}_X := 0 \mid \mathbb{1} \mid x \in X \mid u \cdot v \mid u \wedge v \mid u \vee v \mid u^*$$

Paul Brunet KL is decidable November 20th, 2014

$$G(\mathbb{1}) := \longrightarrow \bullet \longrightarrow \qquad G(u \cdot v) := \longrightarrow \bullet -G(u) \to \bullet -G(v) \to \bullet \longrightarrow$$

$$G(x) := \longrightarrow \bullet -x \to \bullet \longrightarrow \qquad G(u \wedge v) := \longrightarrow \bullet \xrightarrow{G(u)} \bullet \longrightarrow$$

$$G(\mathbb{1}) := \longrightarrow \bullet \longrightarrow \qquad G(u \cdot v) := \longrightarrow \bullet -G(u) \longrightarrow \bullet -G(v) \longrightarrow \bullet \longrightarrow G(x) := \longrightarrow \bullet -x \longrightarrow \bullet \longrightarrow G(u \wedge v) := \longrightarrow \bullet -G(u) \longrightarrow \bullet \longrightarrow G(u) \longrightarrow G(u) \longrightarrow \bullet \longrightarrow G(u) \longrightarrow G($$

Example

$$G(a \cdot b): \longrightarrow 0 \longrightarrow b$$

Paul Brunet KL - is decidable November 20th, 2014

$$G(\mathbb{1}) := \longrightarrow \bullet \longrightarrow \qquad G(u \cdot v) := \longrightarrow \bullet -G(u) \to \bullet -G(v) \to \bullet \longrightarrow$$

$$G(x) := \longrightarrow \bullet -x \to \bullet \longrightarrow \qquad G(u \wedge v) := \longrightarrow \bullet \xrightarrow{G(u) \to \bullet} \bullet \longrightarrow$$

Example

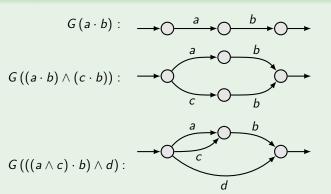


Paul Brunet KL - is decidable

$$G(\mathbb{1}) := \longrightarrow \bullet \longrightarrow \qquad G(u \cdot v) := \longrightarrow \bullet -G(u) \to \bullet -G(v) \to \bullet \longrightarrow$$

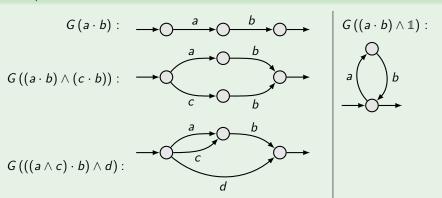
$$G(x) := \longrightarrow \bullet \longrightarrow x \to \bullet \longrightarrow \qquad G(u \wedge v) := \longrightarrow \bullet \stackrel{G(u)}{\longrightarrow} \bullet \longrightarrow$$

Example



$$G(\mathbb{1}) := \longrightarrow \bullet \longrightarrow G(u) \longrightarrow \bullet \longrightarrow G(v) \longrightarrow G(v) \longrightarrow \bullet \longrightarrow G(v) \longrightarrow$$

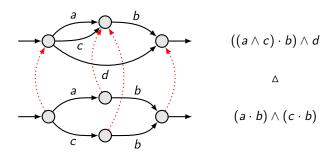
Example



Preorders

Preorder on graphs

 $G \triangleleft G'$ if there exists a graph morphism from G' to G.



Preorder on terms

$$u \triangleleft v$$
 if $G(u) \blacktriangleleft G(v)$.

Characterization theorem

Theorem

 $u, v \in \mathcal{W}_X$

$$Rel \models u \leq v \Leftrightarrow u \triangleleft v$$

- P. J. Freyd and A. Scedrov. Categories, Allegories. NH, 1990
- H. Andréka and D. Bredikhin.

The equational theory of union-free algebras of relations. Alg. Univ., 33(4):516-532, 1995

Paul Brunet KL is decidable November 20th, 2014

Graphs/Ground terms languages

$$\llbracket _ \rrbracket : \mathcal{R}\textit{eg}_X^\wedge \to \mathcal{P}\left(\mathcal{W}_X\right)$$

$$[\![0]\!] := \emptyset$$

$$[\![1]\!] := \{1\!] \}$$

$$[\![x]\!] := \{x\} \}$$

$$[\![e \cdot f]\!] := \{w \cdot w' \mid w \in [\![e]\!] \text{ and } w' \in [\![f]\!] \}$$

$$[\![e \wedge f]\!] := \{w \wedge w' \mid w \in [\![e]\!] \text{ and } w' \in [\![f]\!] \}$$

$$[\![e \vee f]\!] := [\![e]\!] \cup [\![f]\!]$$

$$[\![e^*]\!] := \bigcup_{n \in \mathbb{N}} \{w_1 \cdot \dots \cdot w_n \mid \forall i, w_i \in [\![e]\!] \} .$$

Graph language of an expression

$$e \in \mathcal{R}\textit{eg}_{X}^{\wedge},$$

$$G(e) := \{G(w) \mid w \in \llbracket e \rrbracket \}.$$

November 20th, 2014 Paul Brunet KL is decidable

Reg \^

Characterization theorem

$$S^{\blacktriangleleft} := \{G \mid G \blacktriangleleft G', G' \in S\}.$$

Theorem

$$e, f \in \mathcal{R}eg_X^{\wedge},$$

$$Rel \models e \leqslant f \Leftrightarrow G(e)^{\blacktriangleleft} \subseteq G(f)^{\blacktriangleleft}$$

Almost proven in:

H. Andréka, S. Mikulás, and I. Németi. The equational theory of Kleene lattices. TCS, 412(52):7099-7108, 2011

Paul Brunet KL is decidable November 20th, 2014

Plan

- Introduction
 - Kleene Algebra
 - Kleene Lattices
- Graph languages
 - Ground terms
 - Regular expressions with intersection
- Petri Automata
 - Definition
 - Recognition by Petri automata
- Decision Procedure
- 6 Conclusions

Restriction: identity-free terms

$$G((a \cdot b) \wedge 1)$$
:

Restriction: identity-free terms

$$G((a \cdot b) \wedge 1)$$
:

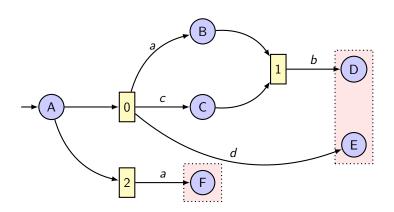
$$u, v \in \mathcal{W}_X^- := 0 \mid 1 \mid x \in X \mid u \cdot v \mid u \wedge v \mid u \vee v \mid u^*$$

$$e,f\in\mathcal{R}eg_X^{\wedge-}:=\emptyset \ | \ \mathbb{1} \ | \ x\in X \ | \ e\cdot f \ | \ e\wedge f \ | \ e\vee f \ | \ e^+$$

Paul Brunet KL - is decidable

Example

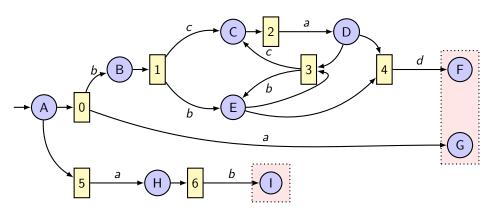
$$(((a \land c) \cdot b) \land d) \lor a$$



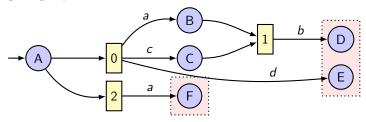
Example

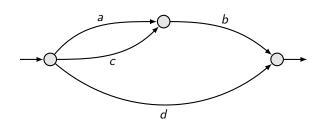
$$(b \cdot (a \cdot c \wedge b)^+ \cdot d) \wedge a \vee a \cdot b$$

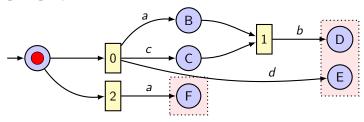
Definition

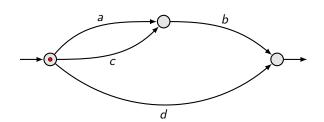


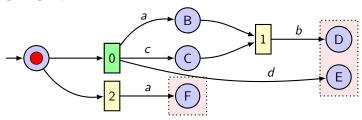
November 20th, 2014 Paul Brunet KL is decidable

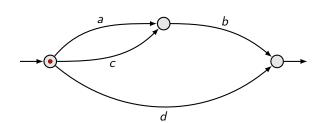


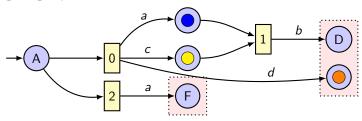


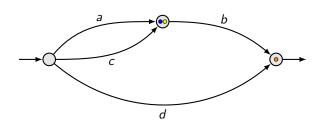




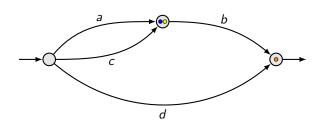


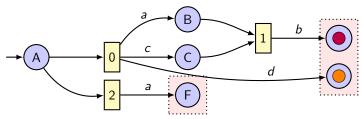


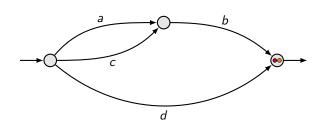




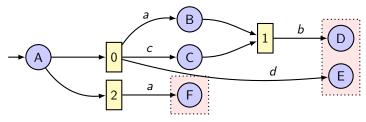


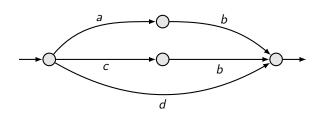


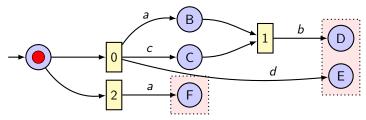


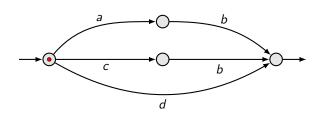


Success!

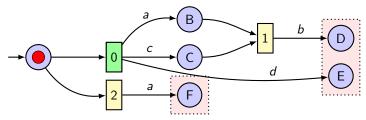


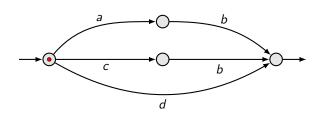


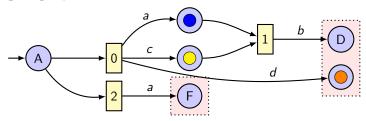


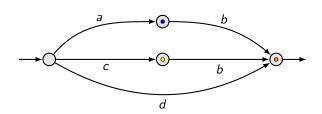


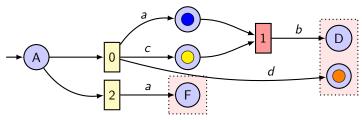
Paul Brunet KL⁻ is decidable November 20th, 2014

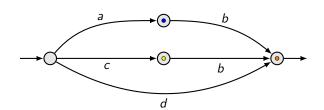




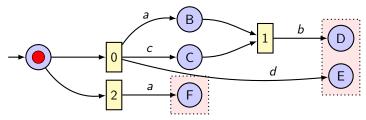


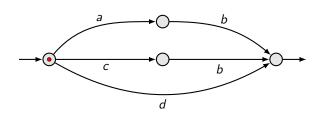


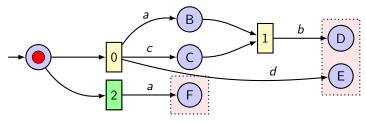


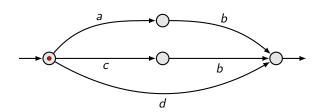


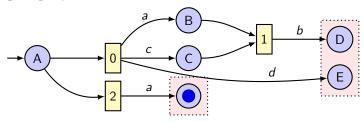
Failure!

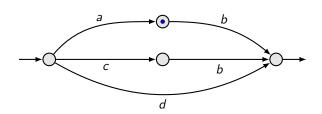


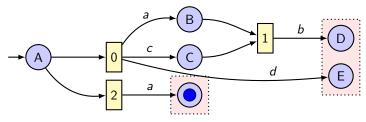


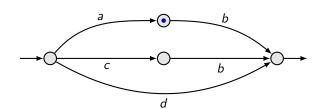












Failure!

Correctness

For any $e \in \mathcal{R}eg_X^{\wedge -}$,

е

November 20th, 2014 Paul Brunet KL is decidable

Correctness

For any $e \in \mathcal{R}\textit{eg}_X^{\wedge -}$,

 $\mathscr{A}(e)$

Correctness

For any $e \in \mathcal{R}\textit{eg}_X^{\wedge -}$,

$$\mathcal{L}(\mathcal{A}(e))$$

Correctness

For any $e \in \mathcal{R}eg_X^{\wedge -}$,

$$\mathscr{L}(\mathscr{A}(e)) = G(e)^{\blacktriangleleft}.$$

Paul Brunet KL is decidable

Plan

- Introduction
 - Kleene Algebra
 - Kleene Lattices
- Graph languages
 - Ground terms
 - Regular expressions with intersection
- Petri Automata
 - Definition
 - Recognition by Petri automata
- 4 Decision Procedure
- Conclusions

Comparing automata

$$Rel \models e \leqslant f \; \Leftrightarrow \; G(e)^{\blacktriangleleft} \subseteq G(f)^{\blacktriangleleft} \; \Leftrightarrow \; \mathscr{L}(\mathscr{A}(e)) \subseteq \mathscr{L}(\mathscr{A}(f)).$$

Problem:

How to compare two Petri automata?

Comparing automata

$$Rel \models e \leqslant f \; \Leftrightarrow \; G(e)^{\blacktriangleleft} \subseteq G(f)^{\blacktriangleleft} \; \Leftrightarrow \; \mathscr{L}(\mathscr{A}(e)) \subseteq \mathscr{L}(\mathscr{A}(f)).$$

Problem:

How to compare two Petri automata?

... not that easily!

Comparing automata

$$Rel \models e \leqslant f \Leftrightarrow G(e)^{\blacktriangleleft} \subseteq G(f)^{\blacktriangleleft} \Leftrightarrow \mathscr{L}(\mathscr{A}(e)) \subseteq \mathscr{L}(\mathscr{A}(f)).$$

Problem:

How to compare two Petri automata?

 $\mathscr{L}(\mathscr{A}_1) \subseteq \mathscr{L}(\mathscr{A}_2)$ if and only if there is a simulation relation

$$\leq \subseteq \mathcal{P}(P_1) \times \mathcal{P}(P_2 \rightarrow P_1)$$

between the configurations of \mathscr{A}_1 and the partial maps from the places of \mathscr{A}_2 to the places of \mathscr{A}_1 .

Results

• Reduction of relational equivalence to equality of closed graph languages.

Future work

Results

- Reduction of relational equivalence to equality of closed graph languages.
- Representation of closed graph languages through Petri automata.

Future work

Results

- Reduction of relational equivalence to equality of closed graph languages.
- Representation of closed graph languages through Petri automata.
- Decidability of automata equivalence, thus of relational equivalence.

Future work

Results

- Reduction of relational equivalence to equality of closed graph languages.
- Representation of closed graph languages through Petri automata.
- Decidability of automata equivalence, thus of relational equivalence.

This decision procedure was implemented in OCamL , and is available as an online application.

Future work

Results

- Reduction of relational equivalence to equality of closed graph languages.
- Representation of closed graph languages through Petri automata.
- Decidability of automata equivalence, thus of relational equivalence.

This decision procedure was implemented in OCAML, and is available as an online application.

Future work

Decidability with 1.

Paul Brunet KI = is decidable November 20th, 2014

Results

- Reduction of relational equivalence to equality of closed graph languages.
- Representation of closed graph languages through Petri automata.
- Decidability of automata equivalence, thus of relational equivalence.

This decision procedure was implemented in OCamL , and is available as an online application.

Future work

- Decidability with 1.
- Completeness.

Results

- Reduction of relational equivalence to equality of closed graph languages.
- Representation of closed graph languages through Petri automata.
- Decidability of automata equivalence, thus of relational equivalence.

This decision procedure was implemented in OCamL , and is available as an online application.

Future work

- Decidability with 1.
- Completeness.
- Extension with converse.

That's it!

Thank you!

The slides of this talk will be available online shortly on my webpage:

http://perso.ens-lyon.fr/paul.brunet/rklm.

The content presented here has been accepted for publication in $\rm JFLA~2015.$

Plan

- Introduction
 - Kleene Algebra
 - Kleene Lattices
- ② Graph languages
 - Ground terms
 - Regular expressions with intersection
- Petri Automata
 - Definition
 - Recognition by Petri automata
- Decision Procedure
- Conclusions