
Pomset languages and concurrent Kleene
algebras

Completeness and decidability of CKA

Theory seminar, QMU – February 13, 2018

Paul Brunet1, Damien Pous2, Georg Struth3, Tobias Kappé1, Alexandra Silva1,

and Fabio Zanasi1

University College London1, ENS de Lyon – CNRS2, University of Sheffield3

Kleene Algebra
Equivalence of sequential programs

(x := 1; y := 2); (x := y ⊕ y := x) ≡ x := 1; (y := 2; x := y)⊕ (y := 2; y := x)

(x1 · y2) · (xy + yx) = x1 · (y2 · (xy + yx)) (associativity of ·)
= x1 · ((y2 · xy) + (y2 · yx)) (distributivity)

Paul Brunet 2/38

Kleene Algebra
Equivalence of sequential programs

(x := 1; y := 2); (x := y ⊕ y := x) ≡ x := 1; (y := 2; x := y)⊕ (y := 2; y := x)

(x1 · y2) · (xy + yx)

= x1 · (y2 · (xy + yx)) (associativity of ·)
= x1 · ((y2 · xy) + (y2 · yx)) (distributivity)

Paul Brunet 2/38

Kleene Algebra
Equivalence of sequential programs

(x := 1; y := 2); (x := y ⊕ y := x) ≡ x := 1; (y := 2; x := y)⊕ (y := 2; y := x)

(x1 · y2) · (xy + yx) = x1 · (y2 · (xy + yx)) (associativity of ·)

= x1 · ((y2 · xy) + (y2 · yx)) (distributivity)

Paul Brunet 2/38

Kleene Algebra
Equivalence of sequential programs

(x := 1; y := 2); (x := y ⊕ y := x) ≡ x := 1; (y := 2; x := y)⊕ (y := 2; y := x)

(x1 · y2) · (xy + yx) = x1 · (y2 · (xy + yx)) (associativity of ·)
= x1 · ((y2 · xy) + (y2 · yx)) (distributivity)

Paul Brunet 2/38

Kleene Algebra
Equivalence of sequential programs

A Kleene algebra is structure 〈K , 0, 1,+, ·, ?〉 such that:

1) 〈K , 0, 1,+, ·〉 is an idempotent semiring;

2) ∀x ∈ K , 1 + x · x? = x?;

3) ∀x , y , z ∈ K , x + y · z ≤ z ⇒ y ? · x ≤ z .

KA ` e = f ⇔ L (e) = L (f) .

Theorem

Krob, “A Complete System of B-Rational Identities”, 1990.

Kozen, “A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events”,

1991.

Kozen & Silva, “Left-Handed Completeness”, 2012.

Paul Brunet 3/38

Kleene Algebra
Equivalence of sequential programs

Kleene Algebra

regular languages

finite state automata

Completeness

Kleene theorem

Paul Brunet 4/38

Kleene Algebra
Equivalence of sequential programs

Kleene Algebra

regular languages

finite state automata

Completeness

Kleene theorem

Paul Brunet 4/38

Kleene Algebra
Equivalence of sequential programs

Kleene Algebra

regular languages

finite state automata

Completeness

Kleene theorem

Paul Brunet 4/38

Concurrent Kleene Algebras
Equivalence of parallel programs

e, f ∈ E ::= 0 | 1 | a | e + f | e · f | e? | e ‖ f

bi-Kleene Algebra

series-rational

pomset languages

automata ?

Concurrent Kleene Algebra

down-closed

series-rational languages

automata ?

Paul Brunet 5/38

Pomsets

P1 =
a b

a

P2 =

c

b

P1 · P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b

Paul Brunet 6/38

Pomsets

P1 =
a b

a

P2 =

c

b

P1 · P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b

Paul Brunet 6/38

Pomsets

P1 =
a b

a

P2 =

c

b

P1 · P2 =
a b

a

c

b

P1 ‖ P2 =

a b

a

c

b

Paul Brunet 6/38

Rational pomset languages

e, f ∈ E ::= a | 0 | 1 | e · f | e ‖ f | e + f | e?.

JaK :=

{
a

}
J1K :=

{ }
J0K :=∅ Je + f K :=JeK ∪ Jf K

Je · f K :=JeK · Jf K Je ‖ f K :=JeK ‖ Jf K

Je?K :=
⋃
n∈N

JeKn

A set of pomsets S is called a rational pomset language if there is an

expression e ∈ E such that S = JeK.

Definition

Paul Brunet 7/38

Rational pomset languages

e, f ∈ E ::= a | 0 | 1 | e · f | e ‖ f | e + f | e?.

JaK :=

{
a

}
J1K :=

{ }
J0K :=∅ Je + f K :=JeK ∪ Jf K

Je · f K :=JeK · Jf K Je ‖ f K :=JeK ‖ Jf K

Je?K :=
⋃
n∈N

JeKn

A set of pomsets S is called a rational pomset language if there is an

expression e ∈ E such that S = JeK.

Definition

Paul Brunet 7/38

Rational pomset languages

e, f ∈ E ::= a | 0 | 1 | e · f | e ‖ f | e + f | e?.

JaK :=

{
a

}
J1K :=

{ }
J0K :=∅ Je + f K :=JeK ∪ Jf K

Je · f K :=JeK · Jf K Je ‖ f K :=JeK ‖ Jf K

Je?K :=
⋃
n∈N

JeKn

A set of pomsets S is called a rational pomset language if there is an

expression e ∈ E such that S = JeK.

Definition

Paul Brunet 7/38

Kleene Algebra
Equivalence of sequential programs

A Kleene algebra is structure 〈K , 0, 1,+, ·, ?〉 such that:

1) 〈K , 0, 1,+, ·〉 is an idempotent semiring;

2) ∀x ∈ K , 1 + x · x? = x?;

3) ∀x , y , z ∈ K , x + y · z ≤ z ⇒ y ? · x ≤ z .

KA ` e = f ⇔ L (e) = L (f) .

Theorem

Krob, “A Complete System of B-Rational Identities”, 1990.

Kozen, “A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events”,

1991.

Kozen & Silva, “Left-Handed Completeness”, 2012.

Paul Brunet 8/38

bi-Kleene algebra

A bi-Kleene algebra is structure 〈K , 0, 1,+, ·, ?, ‖〉 such that:

1) 〈K , 0, 1,+, ·〉 is an idempotent semiring;

2) ∀x ∈ K , 1 + x · x? = x?;

3) ∀x , y , z ∈ K , x + y · z ≤ z ⇒ y ? · x ≤ z ;

4) 〈K , 0, 1,+, ‖〉 is a commutative idempotent semiring.

biKA ` e = f ⇔ JeK = Jf K.

Theorem

Laurence & Struth, “Completeness theorems for bi-Kleene algebras and series-parallel

rational pomset languages”, 2014.

Paul Brunet 9/38

bi-Kleene algebra

A bi-Kleene algebra is structure 〈K , 0, 1,+, ·, ?, ‖〉 such that:

1) 〈K , 0, 1,+, ·〉 is an idempotent semiring;

2) ∀x ∈ K , 1 + x · x? = x?;

3) ∀x , y , z ∈ K , x + y · z ≤ z ⇒ y ? · x ≤ z ;

4) 〈K , 0, 1,+, ‖〉 is a commutative idempotent semiring.

biKA ` e = f ⇔ JeK = Jf K.

Theorem

Laurence & Struth, “Completeness theorems for bi-Kleene algebras and series-parallel

rational pomset languages”, 2014.

Paul Brunet 9/38

bi-Kleene algebra

A bi-Kleene algebra is structure 〈K , 0, 1,+, ·, ?, ‖〉 such that:

1) 〈K , 0, 1,+, ·〉 is an idempotent semiring;

2) ∀x ∈ K , 1 + x · x? = x?;

3) ∀x , y , z ∈ K , x + y · z ≤ z ⇒ y ? · x ≤ z ;

4) 〈K , 0, 1,+, ‖〉 is a commutative idempotent semiring.

biKA ` e = f ⇔ JeK = Jf K.

Theorem

Laurence & Struth, “Completeness theorems for bi-Kleene algebras and series-parallel

rational pomset languages”, 2014.

Paul Brunet 9/38

Pomset order

a b

c d

a b

c d

v

P1 v P2 if there is a function ϕ : P2 → P1 such that:

1) ϕ is a bijection

2) ϕ preserves labels

3) ϕ preserves ordered pairs

Definition

Gischer, “The equational theory of pomsets”, 1988.

Grabowski, “On partial languages”, 1981.

Notation: vS := {P | ∃P ′ ∈ S : P v P ′ }.

Paul Brunet 10/38

Pomset order

a b

c d

a b

c d

v

P1 v P2 if there is a function ϕ : P2 → P1 such that:

1) ϕ is a bijection

2) ϕ preserves labels

3) ϕ preserves ordered pairs

Definition

Gischer, “The equational theory of pomsets”, 1988.

Grabowski, “On partial languages”, 1981.

Notation: vS := {P | ∃P ′ ∈ S : P v P ′ }.

Paul Brunet 10/38

Pomset order

a b

c d

a b

c d

v

P1 v P2 if there is a function ϕ : P2 → P1 such that:

1) ϕ is a bijection

2) ϕ preserves labels

3) ϕ preserves ordered pairs

Definition

Gischer, “The equational theory of pomsets”, 1988.

Grabowski, “On partial languages”, 1981.

Notation: vS := {P | ∃P ′ ∈ S : P v P ′ }.
Paul Brunet 10/38

Concurrent Kleene algebra

A concurrent Kleene algebra is bi-Kleene algebra 〈K , 0, 1,+, ·, ?, ‖〉 such that:

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d)

a c

b d

a c

b d

v

CKA ` e = f ⇒ vJeK = vJf K.

Theorem

Hoare, Möller, Struth & Wehrman, “Concurrent Kleene Algebra”, 2009.

Paul Brunet 11/38

Concurrent Kleene algebra

A concurrent Kleene algebra is bi-Kleene algebra 〈K , 0, 1,+, ·, ?, ‖〉 such that:

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d)

a c

b d

a c

b d

v

CKA ` e = f ⇒ vJeK = vJf K.

Theorem

Hoare, Möller, Struth & Wehrman, “Concurrent Kleene Algebra”, 2009.

Paul Brunet 11/38

Concurrent Kleene algebra

A concurrent Kleene algebra is bi-Kleene algebra 〈K , 0, 1,+, ·, ?, ‖〉 such that:

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d)

a c

b d

a c

b d

v

CKA ` e = f ⇒ vJeK = vJf K.

Theorem

Hoare, Möller, Struth & Wehrman, “Concurrent Kleene Algebra”, 2009.

Paul Brunet 11/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 12/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 12/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 12/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 12/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 12/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness

II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 12/38

Outline
I. Completeness

II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 12/38

Outline
I. Completeness

II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 12/38

Outline
I. Completeness

II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness

II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 12/38

Outline

I. Completeness

II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness

II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 13/38

Syntactic closures are nice...

An expression e↓ is a closure of e if CKA ` e↓= e and Je↓K = vJeK.

Definition

(1) (2)

If every series-rational expression admits a closure, the axioms of CKA
are complete with respect to down-closed pomset languages.

Lemma

Laurence & Struth, “Completeness theorems for pomset languages and concurrent Kleene

Algebras”, (draft).

Proof. Assume
vJeK = vJf K.

By (2), it means that Je↓K = Jf ↓K.
By completeness of biKA, it follows that biKA ` e↓= f ↓, thus CKA ` e↓= f ↓.
By (1) we get that CKA ` e = e↓= f ↓= f . �

Paul Brunet 14/38

Syntactic closures are nice...

An expression e↓ is a closure of e if CKA ` e↓= e and Je↓K = vJeK.

Definition
(1) (2)

If every series-rational expression admits a closure, the axioms of CKA
are complete with respect to down-closed pomset languages.

Lemma

Laurence & Struth, “Completeness theorems for pomset languages and concurrent Kleene

Algebras”, (draft).

Proof. Assume
vJeK = vJf K.

By (2), it means that Je↓K = Jf ↓K.
By completeness of biKA, it follows that biKA ` e↓= f ↓, thus CKA ` e↓= f ↓.
By (1) we get that CKA ` e = e↓= f ↓= f . �

Paul Brunet 14/38

Syntactic closures are nice...

An expression e↓ is a closure of e if CKA ` e↓= e and Je↓K = vJeK.

Definition
(1) (2)

If every series-rational expression admits a closure, the axioms of CKA
are complete with respect to down-closed pomset languages.

Lemma

Laurence & Struth, “Completeness theorems for pomset languages and concurrent Kleene

Algebras”, (draft).

Proof. Assume
vJeK = vJf K.

By (2), it means that Je↓K = Jf ↓K.
By completeness of biKA, it follows that biKA ` e↓= f ↓, thus CKA ` e↓= f ↓.
By (1) we get that CKA ` e = e↓= f ↓= f . �

Paul Brunet 14/38

Syntactic closures are nice...

An expression e↓ is a closure of e if CKA ` e↓= e and Je↓K = vJeK.

Definition
(1) (2)

If every series-rational expression admits a closure, the axioms of CKA
are complete with respect to down-closed pomset languages.

Lemma

Laurence & Struth, “Completeness theorems for pomset languages and concurrent Kleene

Algebras”, (draft).

Proof. Assume
vJeK = vJf K.

By (2), it means that Je↓K = Jf ↓K.

By completeness of biKA, it follows that biKA ` e↓= f ↓, thus CKA ` e↓= f ↓.
By (1) we get that CKA ` e = e↓= f ↓= f . �

Paul Brunet 14/38

Syntactic closures are nice...

An expression e↓ is a closure of e if CKA ` e↓= e and Je↓K = vJeK.

Definition
(1) (2)

If every series-rational expression admits a closure, the axioms of CKA
are complete with respect to down-closed pomset languages.

Lemma

Laurence & Struth, “Completeness theorems for pomset languages and concurrent Kleene

Algebras”, (draft).

Proof. Assume
vJeK = vJf K.

By (2), it means that Je↓K = Jf ↓K.
By completeness of biKA, it follows that biKA ` e↓= f ↓, thus CKA ` e↓= f ↓.

By (1) we get that CKA ` e = e↓= f ↓= f . �

Paul Brunet 14/38

Syntactic closures are nice...

An expression e↓ is a closure of e if CKA ` e↓= e and Je↓K = vJeK.

Definition
(1) (2)

If every series-rational expression admits a closure, the axioms of CKA
are complete with respect to down-closed pomset languages.

Lemma

Laurence & Struth, “Completeness theorems for pomset languages and concurrent Kleene

Algebras”, (draft).

Proof. Assume
vJeK = vJf K.

By (2), it means that Je↓K = Jf ↓K.
By completeness of biKA, it follows that biKA ` e↓= f ↓, thus CKA ` e↓= f ↓.
By (1) we get that CKA ` e = e↓= f ↓= f .

�

Paul Brunet 14/38

Syntactic closures are nice...

An expression e↓ is a closure of e if CKA ` e↓= e and Je↓K = vJeK.

Definition
(1) (2)

If every series-rational expression admits a closure, the axioms of CKA
are complete with respect to down-closed pomset languages.

Lemma

Laurence & Struth, “Completeness theorems for pomset languages and concurrent Kleene

Algebras”, (draft).

Proof. Assume
vJeK = vJf K.

By (2), it means that Je↓K = Jf ↓K.
By completeness of biKA, it follows that biKA ` e↓= f ↓, thus CKA ` e↓= f ↓.
By (1) we get that CKA ` e = e↓= f ↓= f . �

Paul Brunet 14/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓
(e · f)↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓
(e · f)↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓

(e · f)↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓
(e · f)↓= e↓ ·f ↓

(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓
(e · f)↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓
(e · f)↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓
(e · f)↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓
(e · f)↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓
(e · f)↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f)↓= e↓ +f ↓
(e · f)↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f)↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38

Who’s smaller than a parallel product?

∈ JeK

∈ Jf K

x =

v

u

v

uy

uz

vy

vz

Case 1: x is parallel.
y

z

v uy ‖ vy

v uz ‖ vz

Case 1: x is parallel.

Case 2: x is sequential.
y z

v

v

v v

Paul Brunet 16/38

Who’s smaller than a parallel product?

∈ JeK

∈ Jf K

x =

v

u

v

uy

uz

vy

vz

Case 1: x is parallel.
y

z

v uy ‖ vy

v uz ‖ vz

Case 1: x is parallel.

Case 2: x is sequential.
y z

v

v

v v

Paul Brunet 16/38

Who’s smaller than a parallel product?

∈ JeK

∈ Jf K

x =

v

u

v

uy

uz

vy

vz

Case 1: x is parallel.
y

z

v uy ‖ vy

v uz ‖ vz

Case 1: x is parallel.

Case 2: x is sequential.
y z

v

v

v v

Paul Brunet 16/38

Who’s smaller than a parallel product?

∈ JeK

∈ Jf K

x =

v

u

v

uy

uz

vy

vz

Case 1: x is parallel.
y

z

v uy ‖ vy

v uz ‖ vz

Case 1: x is parallel.

Case 2: x is sequential.
y z

v

v

v v

Paul Brunet 16/38

Parallel splicing and preclosure

∆e is a finite relation over E such that:

u ‖ v ∈ JeK⇔ ∃l ∆e r : u ∈ JlK ∧ v ∈ JrK.

Parallel splicing

e � f = e ‖ f +
∑

l∆e‖f r

(l↓) ‖ (r↓) .

u ‖ v ∈ vJe ‖ f K⇔ u ‖ v ∈ Je � f K.

CKA ` e � f = e ‖ f .

Lemma

Paul Brunet 17/38

Parallel splicing and preclosure

∆e is a finite relation over E such that:

u ‖ v ∈ JeK⇔ ∃l ∆e r : u ∈ JlK ∧ v ∈ JrK.

Parallel splicing

e � f = e ‖ f +
∑

l∆e‖f r

(l↓) ‖ (r↓) .

u ‖ v ∈ vJe ‖ f K⇔ u ‖ v ∈ Je � f K.

CKA ` e � f = e ‖ f .

Lemma

Paul Brunet 17/38

Parallel splicing and preclosure

∆e is a finite relation over E such that:

u ‖ v ∈ JeK⇔ ∃l ∆e r : u ∈ JlK ∧ v ∈ JrK.

Parallel splicing

e � f = e ‖ f +
∑

l∆e‖f r

(l↓) ‖ (r↓) .

u ‖ v ∈ vJe ‖ f K⇔ u ‖ v ∈ Je � f K.

CKA ` e � f = e ‖ f .

Lemma

Paul Brunet 17/38

Who’s smaller than a parallel product?

∈ JeK

∈ Jf K

x =

v

u

v

uy

uz

vy

vz

Case 1: x is parallel.
y

z

v uy ‖ vy

v uz ‖ vz

Case 1: x is parallel.

Case 2: x is sequential.
y z

v

v

v v

Paul Brunet 18/38

Who’s smaller than a parallel product?

∈ JeK

∈ Jf K

x =

v

u

v

uy

uz

vy

vz

Case 1: x is parallel.
y

z

v uy ‖ vy

v uz ‖ vz

Case 1: x is parallel.

Case 2: x is sequential.
y z

v

v

v v

Paul Brunet 18/38

Sequential splicing

∇e is a finite relation over E such that:

u · v ∈ JeK⇔ ∃l ∇e r : u ∈ JlK ∧ v ∈ JrK.

Sequential splicing

u · v ∈ vJe ‖ f K⇔ u · v ∈ Je ‖ f +
∑

le ∇e re
lf ∇f rf

(le � lf) · (re ‖ rf)↓K

Problem: re ‖ rf is not always smaller than e ‖ f ...

Paul Brunet 19/38

Sequential splicing

∇e is a finite relation over E such that:

u · v ∈ JeK⇔ ∃l ∇e r : u ∈ JlK ∧ v ∈ JrK.

Sequential splicing

u · v ∈ vJe ‖ f K⇔ u · v ∈ Je ‖ f +
∑

le ∇e re
lf ∇f rf

(le � lf) · (re ‖ rf)↓K

Problem: re ‖ rf is not always smaller than e ‖ f ...

Paul Brunet 19/38

Sequential splicing

∇e is a finite relation over E such that:

u · v ∈ JeK⇔ ∃l ∇e r : u ∈ JlK ∧ v ∈ JrK.

Sequential splicing

u · v ∈ vJe ‖ f K⇔ u · v ∈ Je ‖ f +
∑

le ∇e re
lf ∇f rf

(le � lf) · (re ‖ rf)↓K

Problem: re ‖ rf is not always smaller than e ‖ f ...

Paul Brunet 19/38

And then, some magic happens...

We repeat the construction to get successive equations, involving

closures.

Only a finite number of unknown closures appear.

These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the

system.

This solution is a closure.

Paul Brunet 20/38

And then, some magic happens...

We repeat the construction to get successive equations, involving

closures.

Only a finite number of unknown closures appear.

These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the

system.

This solution is a closure.

Paul Brunet 20/38

And then, some magic happens...

We repeat the construction to get successive equations, involving

closures.

Only a finite number of unknown closures appear.

These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the

system.

This solution is a closure.

Paul Brunet 20/38

And then, some magic happens...

We repeat the construction to get successive equations, involving

closures.

Only a finite number of unknown closures appear.

These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the

system.

This solution is a closure.

Paul Brunet 20/38

And then, some magic happens...

We repeat the construction to get successive equations, involving

closures.

Only a finite number of unknown closures appear.

These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the

system.

This solution is a closure.

Paul Brunet 20/38

And then, some magic happens...

We repeat the construction to get successive equations, involving

closures.

Only a finite number of unknown closures appear.

These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the

system.

This solution is a closure.

Paul Brunet 20/38

Completeness of CKA

Every series-rational expression admits a closure.

Lemma

CKA ` e = f ⇔ vJeK = vJf K.

Theorem

Implementation: https://doi.org/10.5281/zenodo.926651.

Paul Brunet 21/38

https://doi.org/10.5281/zenodo.926651

Outline

I. Completeness

II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness

II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 22/38

Outline
I. Completeness

II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness

II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 23/38

Two decision problems

Given two expressions e, f , are JeK and Jf K equal?

biKA

Given two expressions e, f , are
vJeK and

vJf K equal?

CKA

Paul Brunet 24/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b

τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b

τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τskip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τskip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τskip

Paul Brunet 25/38

Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τskip

Paul Brunet 25/38

Recognisable pomset languages

JN K is the set of pomset-traces of accepting runs of N .

Language generated by a net

A set of pomsets S is a recognisable pomset language if there is a net N
such that S = JN K.

Definition

Paul Brunet 26/38

Reading a pomset in a net

a

b

c

d

a

b c

d

a

b

c

d

skip

Paul Brunet 27/38

Reading a pomset in a net

a

b

c

d

a

b c

d

a

b

c

d

skip

Paul Brunet 27/38

Reading a pomset in a net

a

b

c

d

a

b c

d

a

b

c

d

skip

Paul Brunet 27/38

Reading a pomset in a net

a

b

c

d

a

b c

d

a

b

c

d

skip

Paul Brunet 27/38

Reading a pomset in a net

a

b

c

d

a

b c

d

a

b

c

d

skip

Paul Brunet 27/38

Reading a pomset in a net

a

b

c

d

a

b c

d

a

b

c

d

skip

Paul Brunet 27/38

Reading a pomset in a net

a

b

c

d

a

b c

d

a

b

c

d

skip

Paul Brunet 27/38

Reading a pomset in a net

a

b

c

d

a

b c

d

a

b

c

d

skip

Paul Brunet 27/38

Reading a pomset in a net

a

b

c

d

a

b c

d

a

b

c

d

skip

Paul Brunet 27/38

From expressions to automata
N (0) := N (1) := N (a) := a

N (e1 + e2) :=

ι1 f1e1

ι2 f2e2

N (e1 ‖ e2) :=

ι1 f1e1

ι2 f2e2

N (e1 · e2) := ι1 f1e1 ι2 f2e2

N (e?) := ι fe

Paul Brunet 28/38

Solving biKA

JeK = JN (e)K.

Lemma

Corollary: Rational pomset languages are recognisable.

Testing containment of pomset-trace languages of two Petri nets is an

ExpSpace-complete problem.

Theorem

Jategaonkar & Meyer, “Deciding true concurrency equivalences on safe, finite nets”, 1996.

Corollary: The problem biKA lies in the class ExpSpace.

Paul Brunet 29/38

Solving biKA

JeK = JN (e)K.

Lemma

Corollary: Rational pomset languages are recognisable.

Testing containment of pomset-trace languages of two Petri nets is an

ExpSpace-complete problem.

Theorem

Jategaonkar & Meyer, “Deciding true concurrency equivalences on safe, finite nets”, 1996.

Corollary: The problem biKA lies in the class ExpSpace.

Paul Brunet 29/38

Solving biKA

JeK = JN (e)K.

Lemma

Corollary: Rational pomset languages are recognisable.

Testing containment of pomset-trace languages of two Petri nets is an

ExpSpace-complete problem.

Theorem

Jategaonkar & Meyer, “Deciding true concurrency equivalences on safe, finite nets”, 1996.

Corollary: The problem biKA lies in the class ExpSpace.

Paul Brunet 29/38

What about CKA?

vJeK = vJf K

⇔ vJeK ⊆ vJf K ∧ vJeK ⊇ vJf K
⇔ JeK ⊆ vJf K ∧ vJeK ⊇ Jf K
⇔ JN (e)K ⊆ vJN (f)K ∧ vJN (e)K ⊇ JN (f)K

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

Paul Brunet 30/38

What about CKA?

vJeK = vJf K ⇔ vJeK ⊆ vJf K ∧ vJeK ⊇ vJf K

⇔ JeK ⊆ vJf K ∧ vJeK ⊇ Jf K
⇔ JN (e)K ⊆ vJN (f)K ∧ vJN (e)K ⊇ JN (f)K

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

Paul Brunet 30/38

What about CKA?

vJeK = vJf K ⇔ vJeK ⊆ vJf K ∧ vJeK ⊇ vJf K
⇔ JeK ⊆ vJf K ∧ vJeK ⊇ Jf K

⇔ JN (e)K ⊆ vJN (f)K ∧ vJN (e)K ⊇ JN (f)K

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

Paul Brunet 30/38

What about CKA?

vJeK = vJf K ⇔ vJeK ⊆ vJf K ∧ vJeK ⊇ vJf K
⇔ JeK ⊆ vJf K ∧ vJeK ⊇ Jf K
⇔ JN (e)K ⊆ vJN (f)K ∧ vJN (e)K ⊇ JN (f)K

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

Paul Brunet 30/38

What about CKA?

vJeK = vJf K ⇔ vJeK ⊆ vJf K ∧ vJeK ⊇ vJf K
⇔ JeK ⊆ vJf K ∧ vJeK ⊇ Jf K
⇔ JN (e)K ⊆ vJN (f)K ∧ vJN (e)K ⊇ JN (f)K

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

Paul Brunet 30/38

Idea of the algorithm

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

build an automaton A1 for JN1K

build an automaton A2 for JN1K ∩ vJN2K

JN1K ⊆ vJN2K if and only if L (A1) = L (A2).

Paul Brunet 31/38

Idea of the algorithm

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

build an automaton A1 for JN1K

build an automaton A2 for JN1K ∩ vJN2K

JN1K ⊆ vJN2K if and only if L (A1) = L (A2).

Paul Brunet 31/38

Idea of the algorithm

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

build an automaton A1 for JN1K

build an automaton A2 for JN1K ∩ vJN2K

JN1K ⊆ vJN2K if and only if L (A1) = L (A2).

Paul Brunet 31/38

Idea of the algorithm

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

build an automaton A1 for JN1K

build an automaton A2 for JN1K ∩ vJN2K

JN1K ⊆ vJN2K if and only if L (A1) = L (A2).

Paul Brunet 31/38

Transition automaton

A

B

C

D

E F

G

t1
a

ta

b

tb
c

tc

t2

{A} {B,C}

{C ,D}

{B,E}

{D,E}

{B,F}

{D,F} {G}
t1

ta

ta

ta

tb

tb

tc

tc

t2

Paul Brunet 32/38

Transition automaton

A

B

C

D

E F

G

t1
a

ta

b

tb
c

tc

t2

{A} {B,C}

{C ,D}

{B,E}

{D,E}

{B,F}

{D,F} {G}
t1

ta

ta

ta

tb

tb

tc

tc

t2

Paul Brunet 32/38

Massaging runs

v

s0 s1

s2 s3 s4 s5 s6

s7

s8

s0 s1 s2 s3 s4 s5 s6 s7 s8
t1 ε ta tc tb t2 ε ε

0

1

2 2

3 3 3 3

4 4

5

6

7 7

8

a

b

c

a

b

c

a

bc

0

1

2 2 2

3 3

4 4 4

5

6 6 6

7

8

a

c

b

A

B

C C

D D D

E F

G

a

c b

0 0

1

2 2 2

3 3

4 4 4 4

5 5

6 6 6 6

7

8

A

B B

C C C

D D D

E F

G G G

a

c

b

a

c b

a

c

b

t1 a
ta

c
tc

b

tb

t2

Paul Brunet 33/38

Massaging runs

v

s0 s1

s2 s3 s4 s5 s6

s7

s8

s0 s1 s2 s3 s4 s5 s6 s7 s8
t1 ε ta tc tb t2 ε ε

0

1

2 2

3 3 3 3

4 4

5

6

7 7

8

a

b

c

a

b

c

a

bc

0

1

2 2 2

3 3

4 4 4

5

6 6 6

7

8

a

c

b

A

B

C C

D D D

E F

G

a

c b

0 0

1

2 2 2

3 3

4 4 4 4

5 5

6 6 6 6

7

8

A

B B

C C C

D D D

E F

G G G

a

c

b

a

c b

a

c

b

t1 a
ta

c
tc

b

tb

t2

Paul Brunet 33/38

Massaging runs

v

s0 s1

s2 s3 s4 s5 s6

s7

s8

s0 s1 s2 s3 s4 s5 s6 s7 s8
t1 ε ta tc tb t2 ε ε

0

1

2 2

3 3 3 3

4 4

5

6

7 7

8

a

b

c

a

b

c

a

bc

0

1

2 2 2

3 3

4 4 4

5

6 6 6

7

8

a

c

b

A

B

C C

D D D

E F

G

a

c b

0 0

1

2 2 2

3 3

4 4 4 4

5 5

6 6 6 6

7

8

A

B B

C C C

D D D

E F

G G G

a

c

b

a

c b

a

c

b

t1 a
ta

c
tc

b

tb

t2

Paul Brunet 33/38

Massaging runs

v

s0 s1

s2 s3 s4 s5 s6

s7

s8

s0 s1 s2 s3 s4 s5 s6 s7 s8
t1 ε ta tc tb t2 ε ε

0

1

2 2

3 3 3 3

4 4

5

6

7 7

8

a

b

c

a

b

c

a

bc

0

1

2 2 2

3 3

4 4 4

5

6 6 6

7

8

a

c

b

A

B

C C

D D D

E F

G

a

c b

0 0

1

2 2 2

3 3

4 4 4 4

5 5

6 6 6 6

7

8

A

B B

C C C

D D D

E F

G G G

a

c

b

a

c b

a

c

b

t1 a
ta

c
tc

b

tb

t2

Paul Brunet 33/38

Massaging runs

v

s0 s1

s2 s3 s4 s5 s6

s7

s8

s0 s1 s2 s3 s4 s5 s6 s7 s8
t1 ε ta tc tb t2 ε ε

0

1

2 2

3 3 3 3

4 4

5

6

7 7

8

a

b

c

a

b

c

a

bc

0

1

2 2 2

3 3

4 4 4

5

6 6 6

7

8

a

c

b

A

B

C C

D D D

E F

G

a

c b

0 0

1

2 2 2

3 3

4 4 4 4

5 5

6 6 6 6

7

8

A

B B

C C C

D D D

E F

G G G

a

c

b

a

c b

a

c

b

t1 a
ta

c
tc

b

tb

t2

Paul Brunet 33/38

Massaging runs

v

s0 s1

s2 s3 s4 s5 s6

s7

s8

s0 s1 s2 s3 s4 s5 s6 s7 s8
t1 ε ta tc tb t2 ε ε

0

1

2 2

3 3 3 3

4 4

5

6

7 7

8

a

b

c

a

b

c

a

bc

0

1

2 2 2

3 3

4 4 4

5

6 6 6

7

8

a

c

b

A

B

C C

D D D

E F

G

a

c b

0 0

1

2 2 2

3 3

4 4 4 4

5 5

6 6 6 6

7

8

A

B B

C C C

D D D

E F

G G G

a

c

b

a

c b

a

c

b

t1 a
ta

c
tc

b

tb

t2

Paul Brunet 33/38

Reduction to automata

Let N1 and N2 be some polite nets, of size n,m.

There is an automaton A (N1) with O (2n) states that recognises the set

of accepting runs in N1 .

Lemma

There is an automaton N1 ≺ N2 with O (2n+m+nm) states that recognises

the set of accepting runs in N1 whose pomset belongs to
vJN2K.

Lemma

Paul Brunet 34/38

Reduction to automata

Let N1 and N2 be some polite nets, of size n,m.

There is an automaton A (N1) with O (2n) states that recognises the set

of accepting runs in N1 .

Lemma

There is an automaton N1 ≺ N2 with O (2n+m+nm) states that recognises

the set of accepting runs in N1 whose pomset belongs to
vJN2K.

Lemma

Paul Brunet 34/38

Decidability & Complexity

Given two expressions e, f ∈ E, we can test if JeK ⊆ vJf K in ExpSpace.

Theorem

Proof.

1) build N (e) and N (f);

2) build A (N (e)) and N (e) ≺ N (f);

3) compare them.

�

The problem CKA is ExpSpace-hard.

Theorem

(Universality problem for regular expressions with interleaving)

Mayer & Stockmeyer, “The complexity of word problems – this time with interleaving”, 1994.

Corollary: The problem CKA is ExpSpace-complete.

Paul Brunet 35/38

Decidability & Complexity

Given two expressions e, f ∈ E, we can test if JeK ⊆ vJf K in ExpSpace.

Theorem

Proof.

1) build N (e) and N (f);

2) build A (N (e)) and N (e) ≺ N (f);

3) compare them.

�

The problem CKA is ExpSpace-hard.

Theorem

(Universality problem for regular expressions with interleaving)

Mayer & Stockmeyer, “The complexity of word problems – this time with interleaving”, 1994.

Corollary: The problem CKA is ExpSpace-complete.

Paul Brunet 35/38

Decidability & Complexity

Given two expressions e, f ∈ E, we can test if JeK ⊆ vJf K in ExpSpace.

Theorem

Proof.

1) build N (e) and N (f);

2) build A (N (e)) and N (e) ≺ N (f);

3) compare them.

�

The problem CKA is ExpSpace-hard.

Theorem

(Universality problem for regular expressions with interleaving)

Mayer & Stockmeyer, “The complexity of word problems – this time with interleaving”, 1994.

Corollary: The problem CKA is ExpSpace-complete.

Paul Brunet 35/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 36/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 36/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 36/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 36/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 36/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness

II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 36/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness

II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 36/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness

II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 36/38

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet 36/38

Further questions

Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

Might I dream of adding names?

Insert you favourite operator here...

Paul Brunet 37/38

Further questions

Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

Might I dream of adding names?

Insert you favourite operator here...

Paul Brunet 37/38

Further questions

Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

Might I dream of adding names?

Insert you favourite operator here...

Paul Brunet 37/38

Further questions

Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

Might I dream of adding names?

Insert you favourite operator here...

Paul Brunet 37/38

Further questions

Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

Might I dream of adding names?

Insert you favourite operator here...

Paul Brunet 37/38

Further questions

Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

Might I dream of adding names?

Insert you favourite operator here...

Paul Brunet 37/38

That’s all folks!

Thank you!

See more at:

http://paul.brunet-zamansky.fr

Paul Brunet 38/38

http://paul.brunet-zamansky.fr

Outline

I. Completeness
II. Decidability & Complexity

E

()↓

J K

Petri Nets

I. Completeness
II. Decidability & Complexity

E

P (P)

J K

P (P)

v()

E

()↓

J K

Petri Nets

Kappé, Brunet, Silva & Zanasi, “Concurrent Kleene Algebra: Free Model and

Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017

Paul Brunet Concurrent Kleene Algebra ∞/38

Outline

I. Introduction

II. Completeness

III. Decidability & Complexity

IV. Summary and Outlook

Paul Brunet Concurrent Kleene Algebra ∞/38

	Introduction
	Completeness
	Decidability & Complexity
	Summary and Outlook

