POMSET LANGUAGES AND CONCURRENT KleENE ALGEBRAS
 COMPLETENESS AND DECIDABILTY OF CKA

Theory seminar, QMU - Fesruary 13, 2018

Paul Brunet', Damien Pous², Geora Struth ${ }^{3}$, Tobias Kappé', Alexandra Silval, and Fabio Zanasil

University College London', ENS de Lyon - CNRS², University of Sheffield ${ }^{3}$
c

Kleene Algebra

Equivalence of sequential procrams

$$
(x:=1 ; y:=2) ;(x:=y \oplus y:=x) \quad \equiv \quad x:=1 ;(y:=2 ; x:=y) \oplus(y:=2 ; y:=x)
$$

Kleene Algebra

Equivalence of sequential procrams

$$
\begin{gathered}
(x:=1 ; y:=2) ;(x:=y \oplus y:=x) \quad \equiv \quad x:=1 ;(y:=2 ; x:=y) \oplus(y:=2 ; y:=x) \\
(x 1 \cdot y 2) \cdot(x y+y x)
\end{gathered}
$$

Kleene Algebra

Equivalence of sequential procrams

$$
\begin{gathered}
(x:=1 ; y:=2) ;(x:=y \oplus y:=x) \quad \equiv \quad x:=1 ;(y:=2 ; x:=y) \oplus(y:=2 ; y:=x) \\
(x 1 \cdot y 2) \cdot(x y+y x)=x 1 \cdot(y 2 \cdot(x y+y x)) \quad \text { (associativity of } \cdot)
\end{gathered}
$$

Kleene Algebra

Equivalence of sequential programs

$$
\begin{aligned}
(x:=1 ; y:=2) ;(x:=y \oplus y:=x) \quad & \quad x:=1 ;(y:=2 ; x:=y) \oplus(y:=2 ; y:=x) \\
(x 1 \cdot y 2) \cdot(x y+y x) & =x 1 \cdot(y 2 \cdot(x y+y x)) \\
& =x 1 \cdot((y 2 \cdot x y)+(y 2 \cdot y x))
\end{aligned} \quad \begin{aligned}
& \\
& \begin{aligned}
(\text { associativity of })
\end{aligned} \\
& \text { (distributivity) }
\end{aligned}
$$

Kleene Algebra

Equivalence of sequential programs

A Kleene algebra is structure $\langle K, 0,1,+, \cdot, \star\rangle$ such that:
n $\langle K, 0,1,+, \cdot\rangle$ is an idempotent semirinc;
2) $\forall x \in K, 1+x \cdot x^{\star}=x^{\star}$;
3) $\forall x, y, z \in K, x+y \cdot z \leq z \Rightarrow y^{\star} \cdot x \leq z$.

Theorem

$$
\mathrm{KA} \vdash e=f \Leftrightarrow \mathcal{L}(e)=\mathcal{L}(f) .
$$

[ङ Krob, "A Complete System of B-Rational Identities", 1990
[Fozen, "A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events", 1991.

Kozen $\xlongequal[F]{T}$ Silva, "Left-Handed Completeness", 2012

Kleene Algebra
 Equivalence of sequential procrams

finite state automata

Kleene Algebra

Equivalence of sequential procrams

Kleene Algebra

Equivalence of sequential procrams

Completeness

Kleene theorem

CONCURRENT Kleene Algebras

Equivalence of parallel programs

$$
e, f \in \mathbb{E}::=0|1| a|e+f| e \cdot f\left|e^{\star}\right| e \| f
$$

Bi-Kleene Algebra

series-rational
pomset lancuaces

automata ?

Concurrent Kleene Algebra

down-closed series-rational lancuages

automata?

POMSETS

$$
P_{1}=\frac{\sqrt{2}}{\text { a }} \frac{2}{2}
$$

$$
P_{2}=
$$

POMSETS

POMSETS

$$
P_{1} \| P_{2}=
$$

RATIONAL POMSET LANGUAGES

$$
e, f \in \mathbb{E}::=a|0| 1|e \cdot f| e \| f|e+f| e^{\star} .
$$

RATIONAL POMSET LANGUAGES

$$
\begin{aligned}
& e, f \in \mathbb{E}::=a|0| 1|e \cdot f| e \| f|e+f| e^{\star} . \\
& {[\mathrm{a}]:=\{\geq\}} \\
& {[0]:=\emptyset} \\
& \llbracket e \cdot f \rrbracket:=\llbracket e \rrbracket \cdot \llbracket f \rrbracket \\
& \llbracket e^{*} \rrbracket:=\bigcup_{n \in \mathbb{N}} \llbracket e \rrbracket^{n} \\
& {[1]:=\{\mathbb{N}\}} \\
& \llbracket e+f \rrbracket:=\llbracket e \rrbracket \cup \llbracket f \rrbracket \\
& \llbracket e|\mid f \rrbracket:=\llbracket e \rrbracket \rrbracket \llbracket \llbracket \rrbracket
\end{aligned}
$$

RATIONAL POMSET LANGUAGES

$$
\begin{aligned}
& e, f \in \mathbb{E}::=a|0| 1|e \cdot f| e \| f|e+f| e^{\star} . \\
& \text { 【a】 : = \{ive a }\} \\
& \text { 〔0]:= } \\
& \llbracket e \cdot f \rrbracket:=\llbracket e \rrbracket \cdot \llbracket f \rrbracket \\
& \llbracket e^{\star} \rrbracket:=\bigcup_{n \in \mathbb{N}} \llbracket e \rrbracket^{n} \\
& \text { 【1] : }=\{\text { जै }\} \\
& \llbracket e+f \rrbracket:=\llbracket e \rrbracket \cup \llbracket f \rrbracket \\
& \llbracket e\|f \rrbracket:=\llbracket e \rrbracket\| \llbracket f \rrbracket
\end{aligned}
$$

Definition
A set of pomsets S is called a rational pomset lancuace if there is an expression $e \in \mathbb{E}$ such that $S=\llbracket e \bar{\rrbracket}$ ．

Kleene Algebra

Equivalence of sequential programs

A Kleene algebra is structure $\langle K, 0,1,+, \cdot, \star\rangle$ such that:
n $\langle K, 0,1,+, \cdot\rangle$ is an idempotent semirinc;
2) $\forall x \in K, 1+x \cdot x^{\star}=x^{\star}$;
3) $\forall x, y, z \in K, x+y \cdot z \leq z \Rightarrow y^{\star} \cdot x \leq z$.

Theorem

$$
\mathrm{KA} \vdash e=f \Leftrightarrow \mathcal{L}(e)=\mathcal{L}(f) .
$$

[Frob, "A Complete System of B-Rational Identities", 1990
Kozen, "A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events", 1991.

Kozen $\xlongequal[F]{T}$ Silva, "Left-Handed Completeness", 2012

BI-KLEENE ALGEBRA

A Bi-Kleene alcebra is structure $\langle K, 0,1,+, \cdot, \star, \|\rangle$ such that:
n) $\langle K, 0,1,+, \cdot\rangle$ is an idempotent semiring;
2) $\forall x \in K, 1+x \cdot x^{\star}=x^{\star}$;
3) $\forall x, y, z \in K, x+y \cdot z \leq z \Rightarrow y^{\star} \cdot x \leq z$;

BI-KLEENE ALGEBRA

A Bi-Kleene alcebra is structure $\langle K, 0,1,+, \cdot, \star, \|\rangle$ such that:
n $\langle K, 0,1,+, \cdot\rangle$ is an idempotent semiring;
2) $\forall x \in K, 1+x \cdot x^{\star}=x^{\star}$;
3) $\forall x, y, z \in K, x+y \cdot z \leq z \Rightarrow y^{\star} \cdot x \leq z$;
4) $\langle K, 0,1,+, \||$ is a commutative idempotent semiring.

BI-KLEENE AlGEBRA

A Bi-Kleene algesra is structure $\langle K, 0,1,+, \cdot, \star, \|\rangle$ such that:
n) $\langle K, 0,1,+, \cdot\rangle$ is an idempotent semiring;
2) $\forall x \in K, 1+x \cdot x^{\star}=x^{\star}$;
3) $\forall x, y, z \in K, x+y \cdot z \leq z \Rightarrow y^{\star} \cdot x \leq z$;
4) $\langle K, 0,1,+, \||$ is a commutative idempotent semiring.

Theorem

$$
\text { biKA } \vdash e=f \Leftrightarrow \llbracket e \rrbracket=\llbracket f \rrbracket \text {. }
$$

[^0]
POMSET ORDER

POMSET ORDER

Definition

$P_{1} \sqsubseteq P_{2}$ if there is a function $\varphi: P_{2} \rightarrow P_{1}$ such that:

1) φ is a bijection
2) φ preserves labels
3) φ preserves ordered pairs
[Fischer, "The equational theory of pomsets", 1988.
Grabowski, "On partial lancuages", 1981.

POMSET ORDER

Definition

$P_{1} \sqsubseteq P_{2}$ if there is a function $\varphi: P_{2} \rightarrow P_{1}$ such that:

1) φ is a bijection
2) φ preserves labels
3) φ preserves ordered pairs
```
[3ischer, "The equational theory of pomsets", 1988
[Frabowski, "On partial lancuaces", 1981 .
```

Notation: $\sqsubseteq S:=\left\{P \mid \exists P^{\prime} \in S: P \sqsubseteq P^{\prime}\right\}$.

CONCURRENT Kleene Algebra

A concurrent Kleene alcerra is Bi-Kleene alceBra $\langle K, 0,1,+, \cdot, \star|,\rangle$ such that:
$(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d)$

CONCURRENT KLEENE ALGEBRA

A concurrent Kleene alceBra is Bi-Kleene alceBra $\langle K, 0,1,+, \cdot, \star|,\rangle$ such that:
$(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d)$

\sqsubseteq

CONCURRENT KLEENE ALGEBRA

A concurrent Kleene alcebra is Bi-Kleene algeBra $\langle K, 0,1,+, \cdot, \pi, \| \mid\rangle$ such that:

$$
(a \| b) \cdot(c \| d) \leq(a \cdot c) \|(b \cdot d)
$$

ᄃ

Theorem

$$
\mathrm{CKA} \vdash e=f \Rightarrow \sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket .
$$

Hoare, Möller, Struth $\stackrel{\mp}{T}$ Wehrman, "Concurrent Kleene Algebra", 2009.

OUTLINE

OUTLINE

$$
\left.\right|_{\substack{\mathcal{P} \\ \llbracket \\ \mathbb{P})}} ^{\mathbb{E}, \rrbracket}
$$

OUTLINE

OUTLINE

OUTLINE

OUTLINE

1. Completeness

OUTLINE
Completeness

OUTLINE
Completeness

OUTLINE

I. Completeness II. Decidazility $\stackrel{\rightharpoonup}{\top}$ Complexity

Kappé, Brunet, Silva $\stackrel{1}{\tau}$ Zanasi, "Concurrent Kleene AlceBra: Free Model and Completeness", 2018
l. Completeness

Decidsality 4 Complexity

SYNTACTIC CLOSURES ARE NICE...

Definition
An expression $e \downarrow$ is a closure of e if CKA $\vdash e \downarrow=e$ and $\llbracket e \downarrow \rrbracket=\sqsubseteq \llbracket e \rrbracket$.

SYNTACTIC CLOSURES ARE NICE...

An expression $e \downarrow$ is a closure of e if $\overparen{\text { CKA } \vdash e \downarrow=e}$ and $\overparen{\llbracket e \downarrow \rrbracket=}{ }^{(2)} \llbracket e \rrbracket$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lanquages.

Laurence $\stackrel{\leftrightarrows}{T}$ Struth, "Completeness theorems for pomset lancuages and concurrent Kleene Algebras", (draft).

SYNTACTIC CLOSURES ARE NICE...

Definition

An expression $e \downarrow$ is a closure of e if $\overparen{\mathrm{CKA} \vdash e \downarrow=e}$ and $\overparen{\llbracket \ell \downarrow \rrbracket=\llbracket \llbracket \rrbracket}$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lanquages.
[3 Laurence $\stackrel{\leftrightarrows}{T}$ Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft).
Proof. Assume $\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket$.

SYNTACTIC CLOSURES ARE NICE...

Definition

An expression $e \downarrow$ is a closure of e if $\overparen{\mathrm{CKA} \vdash e \downarrow=e}$ and $\overparen{\llbracket \downarrow \downarrow \rrbracket={ }^{〔} \llbracket e \rrbracket}$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lanquages.

Laurence $\stackrel{\leftrightarrows}{T}$ Struth, "Completeness theorems for pomset lancuages and concurrent Kleene Algebras", (draft).
Proof. Assume $\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket$.
By (2), it means that $\llbracket e \downarrow \rrbracket=\llbracket f \downarrow \rrbracket$.

SYNTACTIC CLOSURES ARE NICE...

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lanquaces.

Laurence $\stackrel{T}{T}$ Struth, "Completeness theorems for pomset lancuages and concurrent Kleene Algebras", (draft).
Proof. Assume $\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket$.
By (2), it means that $\llbracket e \downarrow \rrbracket=\llbracket f \downarrow \rrbracket$.
By completeness of biKA, it follows that biKA $\vdash e \downarrow=f \downarrow$, thus CKA $\vdash e \downarrow=f \downarrow$.

SYNTACTIC CLOSURES ARE NICE...

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lanquaces.
[3 Laurence $\stackrel{\leftrightarrows}{T}$ Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft).
Proof. Assume $\sqsubset \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket$.
By (2), it means that $\llbracket e \downarrow \rrbracket=\llbracket f \downarrow \rrbracket$.
By completeness of biKA, it follows that biKA $\vdash e \downarrow=f \downarrow$, thus CKA $\vdash e \downarrow=f \downarrow$. By (I) we cet that CKA $\vdash e=e \downarrow=f \downarrow=f$.

SYNTACTIC CLOSURES ARE NICE...

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset lanquaces.
[3 Laurence $\stackrel{\leftrightarrows}{T}$ Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft).
Proof. Assume $\sqsubset \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket$.
By (2), it means that $\llbracket e \downarrow \rrbracket=\llbracket f \downarrow \rrbracket$.
By completeness of biKA, it follows that biKA $\vdash e \downarrow=f \downarrow$, thus CKA $\vdash e \downarrow=f \downarrow$. By (I) we cet that CKA $\vdash e=e \downarrow=f \downarrow=f$.

BUT DO THEY EXIST?

Let's try and compute the closure By induction:

BUT DO THEY EXIST?

Let's try and compute the closure by induction:

$$
\begin{aligned}
& 0 \downarrow=0 \\
& 1 \downarrow=1 \\
& a \downarrow=a
\end{aligned}
$$

BUT DO THEY EXIST?

Let's try and compute the dosure By induction:

$$
\begin{aligned}
& 0 \downarrow=0 \\
& 1 \downarrow=1 \\
& a \downarrow=a \\
& (e+f) \downarrow=e \downarrow+f \downarrow
\end{aligned}
$$

BUT DO THEY EXIST?

Let's try and compute the closure by induction:
$0 \downarrow=0$
$1 \downarrow=1$
$a \downarrow=a$
$(e+f) \downarrow=e \downarrow+f \downarrow$
$(e \cdot f) \downarrow=e \downarrow \cdot f \downarrow$

BUT DO THEY EXIST?

Let's try and compute the dosure By induction:

$$
\begin{aligned}
& 0 \downarrow=0 \\
& 1 \downarrow=1 \\
& (\downarrow \downarrow=a \\
& (e+f) \downarrow=e \downarrow+f \downarrow \\
& (e \cdot f) \downarrow=e \downarrow \cdot f \downarrow \\
& \left(e^{\star}\right) \downarrow=e \downarrow^{\star}
\end{aligned}
$$

BUT DO THEY EXIST?

Let's try and compute the dosure By induction:

$$
\begin{aligned}
& 0 \downarrow=0 \\
& 1 \downarrow=1 \\
& a \downarrow=a \\
& (e+f) \downarrow=e \downarrow+f \downarrow \\
& (e \cdot f) \downarrow=e \downarrow \cdot f \downarrow \\
& \left(e^{\star}\right) \downarrow=e \downarrow \downarrow^{\star} \\
& (e \| f) \downarrow=? ? ?
\end{aligned}
$$

... BUT DO THEY EXIST?

Let's try and compute the closure By induction:
$0 \downarrow=0$
$1 \downarrow=1$
$a \downarrow=a$
$(e+f) \downarrow=e \downarrow+f \downarrow$
$(e \cdot f) \downarrow=e \downarrow \cdot f \downarrow$
$\left(e^{\star}\right) \downarrow=e \downarrow^{\star}$
$(e \| f) \downarrow=? ? ?$
We strencthen our induction, By assuming that we have closures for

... BUT DO THEY EXIST?

Let's try and compute the closure By induction:
$0 \downarrow=0$
$1 \downarrow=1$
$a \downarrow=a$
$(e+f) \downarrow=e \downarrow+f \downarrow$
$(e \cdot f) \downarrow=e \downarrow \cdot f \downarrow$
$\left(e^{\star}\right) \downarrow=e \downarrow^{\star}$
$(e \| f) \downarrow=? ?$?
We strencthen our induction, By assuming that we have closures for n every strict subterm of $e \| f$,

... BUT DO THEY EXIST?

Let's try and compute the dosure By induction:
$0 \downarrow=0$
$1 \downarrow=1$
$a \downarrow=a$
$(e+f) \downarrow=e \downarrow+f \downarrow$
$(e \cdot f) \downarrow=e \downarrow \cdot f \downarrow$
$\left(e^{\star}\right) \downarrow=e \downarrow^{\star}$
$(e \| f) \downarrow=? ? ?$
We strencthen our induction, By assuming that we have closures for
n every strict subterm of $e \| f$,
2) every term with smaller width than $e \| f$.

... BUT DO THEY EXIST?

Let's try and compute the dosure By induction:
$0 \downarrow=0$
$1 \downarrow=1$
$a \downarrow=a$
$(e+f) \downarrow=e \downarrow+f \downarrow$
$(e \cdot f) \downarrow=e \downarrow \cdot f \downarrow$
$\left(e^{\star}\right) \downarrow=e \downarrow^{\star}$
$(e \| f) \downarrow=? ? ?$
We strencthen our induction, By assuming that we have closures for
n every strict subterm of $e \| f$,
2) every term with smaller width than $e \| f$.

We write the corresponding strict ordering \prec.

WHO'S SMALLER THAN A PARALLEL PRODUCT?

PARALLEL SPLICING AND PRECLOSURE

Parallel splicing
Δ_{e} is a finite relation over \mathbb{E} such that:

$$
u \| v \in \llbracket e \rrbracket \Leftrightarrow \exists / \Delta_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

PARALLEL SPLICING AND PRECLOSURE

Parallel splicina
Δ_{e} is a finite relation over \mathbb{E} such that:

$$
u \| v \in \llbracket e \rrbracket \Leftrightarrow \exists / \Delta_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

$$
e \odot f=e\left\|f+\sum_{\mid \Delta_{e \mid f} r}(I \downarrow)\right\|(r \downarrow) .
$$

PARALLEL SPLICING AND PRECLOSURE

Parallel splicing
Δ_{e} is a finite relation over \mathbb{E} such that:

$$
u \| v \in \llbracket e \rrbracket \Leftrightarrow \exists / \Delta_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

$$
e \odot f=e\left\|f+\sum_{\mid \Delta_{\text {el| }} r}(I \downarrow)\right\|(r \downarrow) .
$$

Lemma

$$
\begin{gathered}
u\|v \in \sqsubseteq \llbracket e\| f \rrbracket \Leftrightarrow u \| v \in \llbracket e \odot f \rrbracket . \\
\mathrm{CKA} \vdash e \odot f=e \| f .
\end{gathered}
$$

WHO'S SMALLER THAN A PARALLEL PRODUCT?

WHO'S SMALLER THAN A PARALLEL PRODUCT?

SEQUENTIAL SPLICING

Sequential splicing
∇_{e} is a finite relation over \mathbb{E} such that:

$$
u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists / \nabla_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

SEQUENTIAL SPLICING

Sequential splicing

∇_{e} is a finite relation over \mathbb{E} such that:

$$
u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists / \nabla_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

$$
u \cdot v \in \sqsubseteq \llbracket e\|f \rrbracket \Leftrightarrow u \cdot v \in \llbracket e\| f+\sum_{\substack{I_{e} \nabla_{e} r_{e} \\ I_{f} \nabla_{f} r_{f}}}\left(l_{e} \odot I_{f}\right) \cdot\left(r_{e} \| r_{f}\right) \downarrow \rrbracket
$$

SEQUENTIAL SPLICING

Sequential splicing
∇_{e} is a finite relation over \mathbb{E} such that:

$$
u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists / \nabla_{e} r: u \in \llbracket / \rrbracket \wedge v \in \llbracket r \rrbracket .
$$

$$
u \cdot v \in \sqsubseteq \llbracket e\|f \rrbracket \Leftrightarrow u \cdot v \in \llbracket e\| f+\sum_{\substack{I_{e} \nabla_{e} r_{e} \\ I_{f} \nabla_{f} r_{f}}}\left(l_{e} \odot l_{f}\right) \cdot\left(r_{e} \| r_{f}\right) \downarrow \rrbracket
$$

Problem: $r_{e} \| r_{f}$ is not always smaller than $e \| f .$.

AND THEN, SOME MAGIC HAPPENS...

AND THEN, SOME MAGIC HAPPENS...

We repeat the construction to get successive equations, involving closures.

AND THEN, SOME MAGIC HAPPENS...

We repeat the construction to get successive equations, involving closures.

Only a finite number of unknown closures appear.

AND THEN, SOME MAGIC HAPPENS...

We repeat the construction to get successive equations, involving closures.

Only a finite number of unknown closures appear.

These equations can Be structured as a linear system.

AND THEN, SOME MAGIC HAPPENS...

We repeat the construction to get successive equations, involving closures.

Only a finite number of unknown closures appear.

These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the system.

AND THEN, SOME MAGIC HAPPENS...

We repeat the construction to get successive equations, involving dosures.

Only a finite number of unknown closures appear.

These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the system.

This solution is a closure.

COMPLETENESS OF CKA

Lemma

Every series-rational expression admits a closure.
Theorem CKAト $e=f \Leftrightarrow \sqsubseteq \llbracket e \rrbracket=\sqsubseteq_{\llbracket f \rrbracket . ~}^{\text {CK }}$

Implementation: https://doi.org/10.5281/zenodo.926651.

OUTLINE

OUTLINE Brunet, Pous \& Struth, "On decidasiility of concurrent Kleene alcesra", 2017
Completeness
II. Decidasility $\underset{\boldsymbol{T}}{ }$ Complexity

TwO DECISION PROBLEMS
biKA
Given two expressions e, f, are $\llbracket e \rrbracket$ and $\llbracket f \rrbracket$ equal?

CKA
Given two expressions e, f, are $\sqsubseteq \llbracket e \rrbracket$ and $\sqsubseteq \llbracket f \rrbracket$ equal?

LABELLED PETRI NETS

$1+$ skip

LABELLED PETRI NETS

$1+$ skip

LABELLED PETRI NETS

$1+$ skip

LABELLED PETRI NETS

1 skip
τ

LABELLED PETRI NETS

1 skip

LABELLED PETRI NETS

1 skip

LABELLED PETRI NETS

4 skip

LABELLED PETRI NETS

1 skip

LABELLED PETRI NETS

skip

LABELLED PETRI NETS

LABELLED PETRI NETS

1 skip

LABELLED PETRI NETS

1 skip

LABELLED PETRI NETS

skip

LABELLED PETRI NETS

$1+$ skip

LABELLED PETRI NETS

skip

Transition-pomset

LABELLED PETRI NETS

Pomset-trace
skip

RECOGNISABLE POMSET LANGUAGES

Lancuace generated By a net
$\llbracket \mathcal{N} \rrbracket$ is the set of pomset-traces of accepting runs of \mathcal{N}.

Definition
A set of pomsets S is a recocnisable pomset lancuace if there is a net \mathcal{N} such that $S=\llbracket \mathbb{N} \rrbracket$.

READING A POMSET IN A NET

skip

READING A POMSET IN A NET

skip

READING A POMSET IN A NET

skip

READING A POMSET IN A NET

skip

READING A POMSET IN A NET

skip

READING A POMSET IN A NET

skip

READING A POMSET IN A NET

\cdots skip

READING A POMSET IN A NET

skip

READING A POMSET IN A NET

skip

FROM EXPRESSIONS TO AUTOMATA

$$
\mathcal{N}(0):=\rightarrow \mathrm{O} \quad \mathrm{O}(1):=\rightarrow \mathrm{O} \rightarrow \quad \mathcal{N}(a):=\rightarrow \mathrm{O} \rightarrow a \rightarrow 0 \rightarrow
$$

SOLVING biKA

Lemma

$$
\llbracket e \rrbracket=\llbracket \mathcal{N}(e) \rrbracket .
$$

Corollary: Rational pomset lancuaces are recocnisable.

SOLVING biKA

Lemma

$$
\llbracket e \rrbracket=\llbracket \mathcal{N}(e) \rrbracket .
$$

Corollary: Rational pomset lancuaces are recocnisable.

Theorem

Testing containment of pomset-trace lancuages of two Petri nets is an ExpSpace-complete problem.

SOLVING biKA

Lemma

$$
\llbracket e \rrbracket=\llbracket \mathcal{N}(e) \rrbracket .
$$

Corollary: Rational pomset lancuaces are recocnisable.

Theorem

Testing containment of pomset-trace lancuaces of two Petri nets is an ExpSpace-complete problem.

Jategaonkar $\underset{T}{T}$ Meyer, "Deciding true concurrency equivalences on safe, finite nets", 1996.

Corollary: The problem biKA lies in the class ExpSpace.

WHAT ABOUT CKA?

$$
{ }^{5}[c]={ }^{5}[f]
$$

WHAT ABOUT CKA?

WHAT ABOUT CKA?

What About CKA?

$$
\begin{aligned}
& \begin{array}{rccc}
\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket \Leftrightarrow & \sqsubseteq \llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket & \wedge & \sqsubseteq \llbracket e \rrbracket \supseteq \sqsubseteq \llbracket f \rrbracket \\
& \Leftrightarrow & \llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket & \wedge \\
\boxed{C l e \rrbracket} \supseteq \llbracket f \rrbracket
\end{array} \\
& \Leftrightarrow \llbracket \mathcal{N}(e) \rrbracket \subseteq \sqsubseteq \llbracket \mathcal{N}(f) \rrbracket \wedge \complement^{\llbracket} \mathbb{N}(e) \rrbracket \supseteq \llbracket \mathcal{N}(f) \rrbracket
\end{aligned}
$$

WHAT ABOUT CKA?

$$
\begin{aligned}
& \begin{array}{rccc}
\sqsubseteq \llbracket e \rrbracket=\sqsubseteq \llbracket f \rrbracket \Leftrightarrow & \sqsubseteq \llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket & \wedge & \sqsubseteq \llbracket e \rrbracket \supseteq \sqsubseteq \llbracket f \rrbracket \\
& \Leftrightarrow & \llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket & \wedge
\end{array} \quad \sqsubseteq \llbracket e \rrbracket \supseteq \llbracket f \rrbracket \\
& \Leftrightarrow \llbracket \mathcal{N}(e) \rrbracket \subseteq \sqsubseteq \llbracket \mathcal{N}(f) \rrbracket \wedge \sqsubseteq^{〔} \mathbb{N}(e) \rrbracket \supseteq \llbracket \mathcal{N}(f) \rrbracket
\end{aligned}
$$

Problem
Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\operatorname{Pom}\left(R_{1}\right) \sqsubseteq \operatorname{Pom}\left(R_{2}\right) ?
$$

IDEA OF THE ALGORITHM

Problem
Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\operatorname{Pom}\left(R_{1}\right) \sqsubseteq \operatorname{Pom}\left(R_{2}\right) ?
$$

IDEA OF THE ALGORTTHM

Problem
Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P} \circ m\left(R_{2}\right) ?
$$

Build an automaton \mathscr{A}_{1} for $\left.\llbracket \mathcal{N}_{1}\right]$

IDEA OF THE ALGORTTHM

Problem
Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P} \circ m\left(R_{2}\right) ?
$$

Build an automaton \mathscr{A}_{1} for $\llbracket \mathcal{N}_{1} \rrbracket$
Build an automaton \mathscr{A}_{2} for $\llbracket \mathcal{N}_{1} \rrbracket \cap \llbracket \mathcal{N}_{2} \rrbracket$

IDEA OF THE ALGORTTHM

Problem

Let $\mathcal{N}_{1}, \mathcal{N}_{2}$ Be well Behaved nets. Is it true that for every run R_{1} of \mathcal{N}_{1} there is a run R_{2} in \mathcal{N}_{2} such that

$$
\mathcal{P o m}\left(R_{1}\right) \sqsubseteq \mathcal{P} \circ m\left(R_{2}\right) ?
$$

Build an automaton \mathscr{A}_{1} for $\llbracket \mathcal{N}_{1} \rrbracket$
Build an automaton \mathscr{A}_{2} for $\llbracket \mathcal{N}_{1} \rrbracket \cap \llbracket \mathcal{N}_{2} \rrbracket$
$\llbracket \mathcal{N}_{1} \rrbracket \subseteq \llbracket \llbracket \mathcal{N}_{2} \rrbracket$ if and only if $\mathcal{L}\left(\mathscr{A}_{1}\right)=\mathcal{L}\left(\mathscr{A}_{2}\right)$.

TRANSITION AUTOMATON

TRANSITION AUTOMATON

MASSAGING RUNS

MASSAGING RUNS

MASSAGING RUNS

MASSAGING RUNS

MASSAGING RUNS

MASSAGING RUNS

REDUCTION TO AUTOMATA

Let \mathcal{N}_{1} and \mathcal{N}_{2} Be some polite nets, of size n, m.
Lemma
There is an automaton $\mathscr{A}\left(\mathcal{N}_{1}\right)$ with $\mathcal{O}\left(2^{n}\right)$ states that recoenises the set of accepting runs in \mathcal{N}_{1}.

REDUCTION TO AUTOMATA

Let \mathcal{N}_{1} and \mathcal{N}_{2} Be some polite nets, of size n, m.
Lemma
There is an automaton $\mathscr{A}\left(\mathcal{N}_{1}\right)$ with $\mathcal{O}\left(2^{n}\right)$ states that recocnises the set of accepting runs in \mathcal{N}_{1}.

Lemma

There is an automaton $\mathcal{N}_{1} \prec \mathcal{N}_{2}$ with $\mathcal{O}\left(2^{n+m+n m}\right)$ states that recocnises the set of accepting runs in \mathcal{N}_{1} whose pomset Belonas to ${ }^{\square}\left[\mathcal{N}_{2}\right]$.

DECIDABILITY + COMPLEXITY

Theorem
Given two expressions $e, f \in \mathbb{E}$, we can test if $\llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket$ in ExpSpace.
Proof.

1) Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
2) Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
3) compare them.

DECIDABILITY + COMPLEXITY

Theorem

Given two expressions $e, f \in \mathbb{E}$, we can test if $\llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket$ in ExpSpace.

Proof.

n) Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
2) Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
3) compare them.

Theorem

The problem CKA is ExpSpace-hard.
(Universality problem for recular expressions with interleaving)

DECIDABILITY + COMPLEXITY

Theorem
Given two expressions $e, f \in \mathbb{E}$, we can test if $\llbracket e \rrbracket \subseteq \sqsubseteq \llbracket f \rrbracket$ in ExpSpace.

Proof.

n) Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
2) Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
3) compare them.

Theorem

The problem CKA is ExpSpace-hard.
(Universality problem for recular expressions with interleaving)
[ङ゙ Mayer $\stackrel{\text { T }}{ }$ Stockmeyer, "The complexity of word problems - this time with interleaving", 1994.
Corollary: The problem CKA is ExpSpace-complete.

OUTLINE

OUTLINE

$$
\left.\right|_{\underset{\mathcal{P}}{ }(\mathbb{P})} ^{\mathbb{E}-\rrbracket}
$$

OUTLINE

OUTLINE

OUTLINE

OUTLINE

1. Completeness

OUTLINE

1. Completeness

OUTLINE

1. Completeness

OUTLINE

FURTHER OUESTIONS

FURTHER OUESTIONS

Can we extend the alcorithm to a larger class of Petri nets?

FURTHER QUESTIONS

Can we extend the alcorithm to a larger class of Petri nets?

What about the parallel star?

FURTHER QUESTIONS

Can we extend the alcorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

FURTHER QUESTIONS

Can we extend the alcorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

Micht I dream of adding names?

FURTHER QUESTIONS

Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

Might I dream of adding names?
[צ Insert you favourite operator here...

THAT'S ALL FOLKS!

Thank you!

See more at:
http://paul.brunet-zamansky.fr

OUTLINE

OUTLINE

I. Introduction
II. Completeness
III. Decidasility $\stackrel{+}{\boldsymbol{T}}$ Complexity
IV. Summary and Outlook

[^0]: [F Laurence $\stackrel{T}{\text { T }}$ Struth, "Completeness theorems for Bi-Kleene alceBras and series-parallel rational pomset lancuages", 2014.

