POMSET LANGUAGES AND CONCURRENT KLEENE ALGEBRAS Completeness and decidability of CKA

Theory seminar, QMU - February 13, 2018

Paul Brunet¹, Damien Pous², Georg Struth³, Tobias Kappé¹, Alexandra Silva¹, and Fabio Zanasi¹

University College London¹, ENS de Lyon - CNRS², University of Sheffield³

$$(x \coloneqq 1; y \coloneqq 2); (x \coloneqq y \oplus y \coloneqq x) \qquad \equiv \qquad x \coloneqq 1; (y \coloneqq 2; x \coloneqq y) \oplus (y \coloneqq 2; y \coloneqq x)$$

$$(x \coloneqq 1; y \coloneqq 2); (x \coloneqq y \oplus y \coloneqq x) \equiv x \coloneqq 1; (y \coloneqq 2; x \coloneqq y) \oplus (y \coloneqq 2; y \coloneqq x)$$

 $(x1 \cdot y2) \cdot (xy + yx)$

 $(x \coloneqq 1; y \coloneqq 2); (x \coloneqq y \oplus y \coloneqq x) \equiv x \coloneqq 1; (y \coloneqq 2; x \coloneqq y) \oplus (y \coloneqq 2; y \coloneqq x)$

 $(x1 \cdot y2) \cdot (xy + yx) = x1 \cdot (y2 \cdot (xy + yx))$ (associativity of \cdot)

 $(x \coloneqq 1; y \coloneqq 2); (x \coloneqq y \oplus y \coloneqq x) \equiv x \coloneqq 1; (y \coloneqq 2; x \coloneqq y) \oplus (y \coloneqq 2; y \coloneqq x)$

(associativity of ∙) (distributivity)

 $x(1 \cdot y(2) \cdot (xy + yx)) = x(1 \cdot (y(2 \cdot (xy + yx))))$ $= x(1 \cdot ((y(2 \cdot xy) + (y(2 \cdot yx))))$

KLEENE ALGEBRA

Equivalence of sequential programs

A kleene algebra is structure $\langle K, 0, 1, +, \cdot, \star \rangle$ such that:

 $h \langle K, 0, 1, +, \cdot \rangle$ is an idempotent semiring;

- 2) $\forall x \in K$, $1 + x \cdot x^* = x^*$;
- 3) $\forall x, y, z \in K, x + y \cdot z \leq z \Rightarrow y^* \cdot x \leq z.$

Theorem

$\mathrm{KA}\vdash e=f\Leftrightarrow\mathcal{L}\left(e ight)=\mathcal{L}\left(f ight).$

🕼 Krob, "A Complete System of B-Rational Identities", 1990.

Kozen, "A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events", 1991.

📧 Kozen 🕏 Silva, "Left-Handed Completeness", 2012.

finite state automata

Completeness Kleene Algebra regular languages finite state automata

kleene theorem

CONCURRENT KLEENE ALGEBRAS Equivalence of parallel programs

 $e, f \in \mathbb{E} ::= 0 \mid 1 \mid a \mid e+f \mid e \cdot f \mid e^* \mid e \parallel f$

Pomsets

Pomsets

a a b

à b

Paul Brunet

RATIONAL POMSET LANGUAGES

 $e, f \in \mathbb{E} ::= a \mid 0 \mid 1 \mid e \cdot f \mid e \mid f \mid e + f \mid e^{\star}.$

RATIONAL POMSET LANGUAGES

 $e,f\in\mathbb{E}::=a\mid 0\mid 1\mid e\cdot f\mid e\parallel f\mid e+f\mid e^{\star}.$

 $\llbracket a \rrbracket := \left\{ \begin{array}{c} & & \\$

$$\llbracket 1 \rrbracket \coloneqq \left\{ \bigotimes \right\}$$
$$\llbracket e + f \rrbracket \coloneqq \llbracket e \rrbracket \cup \llbracket f \rrbracket$$
$$\llbracket e \parallel f \rrbracket \coloneqq \llbracket e \rrbracket \parallel \llbracket f \rrbracket$$

RATIONAL POMSET LANGUAGES

$$e,f\in\mathbb{E}::=a\mid 0\mid 1\mid e\cdot f\mid e\parallel f\mid e+f\mid e^{\star}.$$

$$\llbracket 1 \rrbracket \coloneqq \left\{ \bigotimes \right\}$$
$$\llbracket e + f \rrbracket \coloneqq \llbracket e \rrbracket \cup \llbracket f \rrbracket$$
$$\llbracket e \parallel f \rrbracket \coloneqq \llbracket e \rrbracket \parallel \llbracket f \rrbracket$$

Definition A set of pomsets S is called a rational pomset language if there is an expression $e \in \mathbb{E}$ such that $S = \llbracket e \rrbracket$.

KLEENE ALGEBRA

Equivalence of sequential programs

A kleene algebra is structure $\langle K, 0, 1, +, \cdot, \star \rangle$ such that:

 $h \langle K, 0, 1, +, \cdot \rangle$ is an idempotent semiring;

- 2) $\forall x \in K$, $1 + x \cdot x^* = x^*$;
- 3) $\forall x, y, z \in K, x + y \cdot z \leq z \Rightarrow y^* \cdot x \leq z.$

Theorem

$\mathrm{KA}\vdash e=f\Leftrightarrow\mathcal{L}\left(e ight)=\mathcal{L}\left(f ight).$

🕼 Krob, "A Complete System of B-Rational Identities", 1990.

Kozen, "A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events", 1991.

📧 Kozen 🕏 Silva, "Left-Handed Completeness", 2012.

BI-KLEENE ALGEBRA

A bi-Kleene algebra is structure $\langle K, 0, 1, +, \cdot, \star, \parallel \rangle$ such that:

- \wedge $\langle K, 0, 1, +, \cdot \rangle$ is an idempotent semiring;
- 2) $\forall x \in K, 1 + x \cdot x^* = x^*;$
- 3) $\forall x, y, z \in K, x + y \cdot z \leq z \Rightarrow y^* \cdot x \leq z;$

BI-KLEENE ALGEBRA

A bi-Kleene algebra is structure $\langle K, 0, 1, +, \cdot, \star, \parallel \rangle$ such that:

- \wedge $\langle K, 0, 1, +, \cdot \rangle$ is an idempotent semiring;
- 2) $\forall x \in K, 1 + x \cdot x^* = x^*;$
- 3) $\forall x, y, z \in K, x + y \cdot z \leq z \Rightarrow y^* \cdot x \leq z;$
- (+) $\langle K, 0, 1, +, \parallel \rangle$ is a commutative idempotent semiring.

BI-KLEENE ALGEBRA

A bi-Kleene algebra is structure $\langle K, 0, 1, +, \cdot, \star, \parallel \rangle$ such that:

- $h \langle K, 0, 1, +, \cdot \rangle$ is an idempotent semiring;
- 2) $\forall x \in K, 1 + x \cdot x^* = x^*;$
- 3) $\forall x, y, z \in K, x + y \cdot z \leq z \Rightarrow y^* \cdot x \leq z;$
- +) $\langle K, 0, 1, +, \parallel \rangle$ is a commutative idempotent semiring.

Theorem

$biKA \vdash e = f \Leftrightarrow \llbracket e \rrbracket = \llbracket f \rrbracket.$

E Laurence \$ Struth, "Completeness theorems for Bi-Kleene algebras and series-parallel rational pomset languages", 2014.

Pomset order

Definition

 $P_1 \sqsubseteq P_2$ if there is a function $\varphi : P_2 \rightarrow P_1$ such that:

 $p \varphi$ is a bijection

2) φ preserves labels

3) φ preserves ordered pairs

🕼 Gischer, "The equational theory of pomsets", 1988.

🕼 Grabowski, "On partial languages", 1981.

Definition

 $P_1 \sqsubseteq P_2$ if there is a function $\varphi : P_2 \rightarrow P_1$ such that:

 $p \varphi$ is a bijection

2) φ preserves labels

3) φ preserves ordered pairs

🕼 Gischer, "The equational theory of pomsets", 1988.

🕼 Grabowski, "On partial languages", 1981.

```
Notation: \sqsubseteq S := \{P \mid \exists P' \in S : P \sqsubseteq P'\}.
```

CONCURRENT KLEENE ALGEBRA

A concurrent Kleene algebra is bi-Kleene algebra $\langle K, 0, 1, +, \cdot, \star, \| \rangle$ such that:

 $(a \parallel b) \cdot (c \parallel d) \leq (a \cdot c) \parallel (b \cdot d)$

CONCURRENT KLEENE ALGEBRA

A concurrent Kleene algebra is bi-Kleene algebra $\langle K, 0, 1, +, \cdot, \star, \| \rangle$ such that:

 $(a \parallel b) \cdot (c \parallel d) \leq (a \cdot c) \parallel (b \cdot d)$

CONCURRENT KLEENE ALGEBRA

A concurrent Kleene algebra is Bi-Kleene algebra $\langle K, 0, 1, +, \cdot, \star, \| \rangle$ such that:

 $(a \parallel b) \cdot (c \parallel d) \leq (a \cdot c) \parallel (b \cdot d)$

Theorem
$$\operatorname{CKA} \vdash e = f \Rightarrow {}^{\sqsubseteq} \llbracket e \rrbracket = {}^{\sqsubseteq} \llbracket f \rrbracket.$$

📧 Hoare, Möller, Struth & Wehrman, "Concurrent Kleene Algebra", 2009.

 \mathbb{E}

 $\mathbb{E} \\ \left| \begin{bmatrix} - \end{bmatrix} \right| \\ \mathcal{P}(\mathbb{P})$

1. Completeness

. Completeness

. Completeness

Definition

An expression $e\downarrow$ is a closure of e if $CKA \vdash e\downarrow = e$ and $\llbracket e\downarrow \rrbracket = \sqsubseteq \llbracket e\rrbracket$.

Definition

An expression $e\downarrow$ is a closure of e if $\overline{\mathrm{CKA}} \vdash e\downarrow = e$ and $[e\downarrow] = \sqsubseteq [e]$.

Lemma

If every series-rational expression admits a closure, the axioms of ${
m CKA}$ are complete with respect to down-closed pomset languages.

Laurence & Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft).

Definition

An expression $e\downarrow$ is a closure of e if $\overline{\text{CKA}} \vdash e\downarrow = e$ and $\overline{[e\downarrow]} = \sqsubseteq [e]$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset languages.

Laurence & Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft).

Proof. Assume $\llbracket [e] = \llbracket [f]$.

Definition

An expression $e\downarrow$ is a closure of e if $\overline{\mathrm{CKA}} \vdash e\downarrow = e$ and $\overline{[e\downarrow]} = \overline{[e]}$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset languages.

Laurence & Struth, "Completeness theorems for pomset languages" and concurrent Kleene Algebras", (draft).

Proof. Assume $\llbracket [e]] = \llbracket [f]]$. By (2), it means that $\llbracket e\downarrow \rrbracket = \llbracket f\downarrow \rrbracket$.

Definition

An expression $e\downarrow$ is a closure of e if $\overline{\mathrm{CKA}} \vdash e\downarrow = e$ and $\overline{[e\downarrow]} = \sqsubseteq [e]$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset languages.

Laurence & Struth, "Completeness theorems for pomset languages" and concurrent Kleene Algebras", (draft).

Proof. Assume $\llbracket [e] = \llbracket [f]$. By (2), it means that $\llbracket e \downarrow \rrbracket = \llbracket f \downarrow \rrbracket$. By completeness of biKA, it follows that biKA $\vdash e \downarrow = f \downarrow$, thus CKA $\vdash e \downarrow = f \downarrow$.

Definition

An expression $e\downarrow$ is a closure of e if $\overrightarrow{\text{CKA}} \vdash e\downarrow = e$ and $\boxed{e\downarrow} = \sqsubseteq e$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset languages.

Laurence & Struth, "Completeness theorems for pomset languages" and concurrent Kleene Algebras", (draft).

Proof. Assume $\llbracket [e] = \llbracket [f]$. By (2), it means that $\llbracket e \downarrow \rrbracket = \llbracket f \downarrow \rrbracket$. By completeness of biKA, it follows that biKA $\vdash e \downarrow = f \downarrow$, thus $CKA \vdash e \downarrow = f \downarrow$. By (1) we get that $CKA \vdash e = e \downarrow = f \downarrow = f$.

Definition

An expression $e\downarrow$ is a closure of e if $\overrightarrow{\text{CKA}} \vdash e\downarrow = e$ and $\boxed{e\downarrow} = \sqsubseteq \boxed{e}$.

Lemma

If every series-rational expression admits a closure, the axioms of CKA are complete with respect to down-closed pomset languages.

Laurence & Struth, "Completeness theorems for pomset languages and concurrent Kleene Algebras", (draft).

Proof. Assume $\llbracket [e] = \llbracket [f]$. By (2), it means that $\llbracket e \downarrow \rrbracket = \llbracket f \downarrow \rrbracket$. By completeness of biKA, it follows that biKA $\vdash e \downarrow = f \downarrow$, thus $CKA \vdash e \downarrow = f \downarrow$. By (1) we get that $CKA \vdash e = e \downarrow = f \downarrow = f$.

Let's try and compute the closure by induction:

Let's try and compute the closure by induction: $\implies 0\downarrow = 0$ $\implies 1\downarrow = 1$ $\implies a\downarrow = a$

Let's try and compute the closure by induction: i = 0 i = 1 i = 1 i = a $i = (e + f) \downarrow = e \downarrow + f \downarrow$

Let's try and compute the closure by induction: $\downarrow = 0$ $\downarrow = 1$ $\downarrow = a$ $\downarrow = a$ $\downarrow = e \downarrow + f \downarrow$ $\downarrow = e \downarrow \cdot f \downarrow$

Let's try and compute the closure by induction: i = 0 i = 1 i = 1 i = a $i = (e+f) \downarrow = e \downarrow + f \downarrow$ $i = (e \cdot f) \downarrow = e \downarrow \cdot f \downarrow$ $i = (e^*) \downarrow = e \downarrow *$

Paul Brunet

Let's try and compute the closure by induction: v = 0 $v = 1 \downarrow = 1$ $v = a \downarrow = a$ $v = (e+f)\downarrow = e\downarrow +f\downarrow$ $v = (e+f)\downarrow = e\downarrow +f\downarrow$ $v = (e^*)\downarrow = e\downarrow \cdot f\downarrow$ $v = (e^*)\downarrow = e\downarrow^*$ $v = (e \parallel f)\downarrow = ???$

Let's try and compute the closure by induction: i = 0 i = 1 i = 1 i = a i = a $i = (e+f)\downarrow = e\downarrow + f\downarrow$ $i = (e+f)\downarrow = e\downarrow + f\downarrow$ $i = (e^*)\downarrow = e\downarrow^*$ $i = (e^+)\downarrow = e\downarrow^*$ $i = (e^+)\downarrow = e\downarrow^*$

We strengthen our induction, by assuming that we have closures for

Let's try and compute the closure by induction: $\gg 0 \downarrow = 0$ $\bowtie 1 \downarrow = 1$ $i a \downarrow = a$ \bowtie $(e+f)\downarrow = e\downarrow +f\downarrow$ \bowtie $(e \cdot f) \downarrow = e \downarrow \cdot f \downarrow$ $(e^{\star}) \downarrow = e \downarrow^{\star}$ \bowtie $(e \parallel f) \downarrow = ???$ We strengthen our induction, by assuming that we have closures for b every strict subterm of $e \parallel f$,

Let's try and compute the closure by induction: $\gg 0 \downarrow = 0$ $\bowtie 1 \downarrow = 1$ $i a \downarrow = a$ $\bowtie (e+f) \downarrow = e \downarrow + f \downarrow$ $\mathbb{I} (e \cdot f) \downarrow = e \downarrow \cdot f \downarrow$ \bowtie $(e^{\star}) \downarrow = e \downarrow^{\star}$ \swarrow $(e \parallel f) \downarrow = ???$ We strengthen our induction, by assuming that we have closures for D every strict subterm of $e \parallel f$, 2) every term with smaller width than $e \parallel f$.

Let's try and compute the closure by induction: [0, -0] = 0 $\bowtie 1 \downarrow = 1$ $i a \downarrow = a$ $\bowtie (e+f) \downarrow = e \downarrow + f \downarrow$ $\mathbb{I} (e \cdot f) \downarrow = e \downarrow \cdot f \downarrow$ \mathbb{W} $(e^{\star}) \downarrow = e \downarrow^{\star}$ \bowtie $(e \parallel f) \downarrow = ???$ We strengthen our induction, by assuming that we have closures for

D every strict subterm of $e \parallel f$,

2) every term with smaller width than $e \parallel f$.

We write the corresponding strict ordering \prec .

x =

Case I: x is parallel.

Case I: x is parallel.

Parallel splicing and preclosure

Parallel splicing

 Δ_e is a finite relation over $\mathbb E$ such that:

 $u \parallel v \in \llbracket e \rrbracket \Leftrightarrow \exists l \ \Delta_e \ r : u \in \llbracket l \rrbracket \land v \in \llbracket r \rrbracket.$

Parallel splicing and preclosure

Parallel splicing

 Δ_e is a finite relation over $\mathbb E$ such that:

 $u \parallel v \in \llbracket e \rrbracket \Leftrightarrow \exists l \ \Delta_e \ r : u \in \llbracket l \rrbracket \land v \in \llbracket r \rrbracket.$

 $e \odot f = e \parallel f + \sum_{l \Delta_{e \parallel f} r} (l \downarrow) \parallel (r \downarrow).$

PARALLEL SPLICING AND PRECLOSURE

Parallel splicing

 Δ_e is a finite relation over $\mathbb E$ such that:

 $u \parallel v \in \llbracket e \rrbracket \Leftrightarrow \exists l \ \Delta_e \ r : u \in \llbracket l \rrbracket \land v \in \llbracket r \rrbracket.$

$$e \odot f = e \parallel f + \sum_{l \Delta_{e \parallel f} r} (l \downarrow) \parallel (r \downarrow).$$

Case I: x is parallel.

SEQUENTIAL SPLICING

Sequential splicing

 $abla_e$ is a finite relation over \mathbbm{E} such that:

 $u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists I \nabla_e r : u \in \llbracket I \rrbracket \land v \in \llbracket r \rrbracket.$

SEQUENTIAL SPLICING

Sequential splicing

 $abla_e$ is a finite relation over \mathbbm{E} such that:

 $u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists I \nabla_e r : u \in \llbracket I \rrbracket \land v \in \llbracket r \rrbracket.$

$$u \cdot v \in \sqsubseteq \llbracket e \parallel f \rrbracket \Leftrightarrow u \cdot v \in \llbracket e \parallel f + \sum_{\substack{l_e \ \nabla_e \ r_e \\ l_f \ \nabla_f \ r_f}} (l_e \odot l_f) \cdot (r_e \parallel r_f) \downarrow \rrbracket$$

SEQUENTIAL SPLICING

Sequential splicing

 $abla_e$ is a finite relation over \mathbbm{E} such that:

 $u \cdot v \in \llbracket e \rrbracket \Leftrightarrow \exists I \nabla_e r : u \in \llbracket I \rrbracket \overline{\land v \in \llbracket r \rrbracket}.$

$$u \cdot v \in {}^{\sqsubseteq} \llbracket e \parallel f \rrbracket \Leftrightarrow u \cdot v \in \llbracket e \parallel f + \sum_{\substack{l_e \ \nabla_e \ r_e \\ l_f \ \nabla_f \ r_f}} (l_e \odot l_f) \cdot (r_e \parallel r_f) \downarrow \rrbracket$$

Problem: $r_e \parallel r_f$ is not always smaller than $e \parallel f_{\dots}$

We repeat the construction to get successive equations, involving closures.

We repeat the construction to get successive equations, involving closures.

W Only a finite number of unknown closures appear.

We repeat the construction to get successive equations, involving closures.

I Only a finite number of unknown closures appear.

IF These equations can be structured as a linear system.

We repeat the construction to get successive equations, involving closures.

I Only a finite number of unknown closures appear.

IF These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the system.

We repeat the construction to get successive equations, involving closures.

To Only a finite number of unknown closures appear.

IF These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the system.

F This solution is a closure.

COMPLETENESS OF CKA

Every series-rational expression admits a closure.

Implementation: https://doi.org/10.5281/zenodo.926651.
OUTLINE

OUTLINE Brunet, Pous & Struth, "On decidability of concurrent Kleene algebra", 2017

Two decision problems

Given two expressions e, f, are [e] and [f] equal?

CKA Given two expressions $e, f, are \models [e] and \models [f] equal?$

biKA

(> skip

(> skip

<u>₋ a</u>

_ a

Labelled Petri nets

(> skip

(> skip

Labelled Petri nets

Transition-pomset

Pomset-trace

Transition-pomset

Recognisable pomset languages

Language generated by a net

 $\llbracket \mathcal{N} \rrbracket$ is the set of pomset-traces of accepting runs of \mathcal{N} .

Solving bika

Lemma

$\llbracket e rbracket = \llbracket \mathcal{N}\left(e ight) rbracket.$

Corollary: Rational pomset languages are recognisable.

SOLVING biKA

$\llbracket e \rrbracket = \llbracket \mathcal{N}(e) \rrbracket.$

Corollary: Rational pomset languages are recognisable.

Theorem

Lemma

Testing containment of pomset-trace languages of two Petri nets is an ExpSpace-complete problem.

📂 Jategaonkar 🕈 Meyer, "Deciding true concurrency equivalences on safe, finite nets", 1996.

SOLVING biKA

$\llbracket e \rrbracket = \llbracket \mathcal{N}(e) \rrbracket.$

Corollary: Rational pomset languages are recognisable.

Theorem

Lemma

Testing containment of pomset-trace languages of two Petri nets is an ExpSpace-complete problem.

📂 Jategaonkar 🕈 Meyer, "Deciding true concurrency equivalences on safe, finite nets", 1996.

Corollary: The problem biKA lies in the class ExpSpace.

WHAT ABOUT CKA?

 ${}^{\sqsubseteq}\llbracket e\rrbracket = {}^{\sqsubseteq}\llbracket f\rrbracket$

WHAT ABOUT CKA?

####
WHAT ABOUT CKA?

$\begin{array}{c} \sqsubseteq \llbracket e \rrbracket = \ulcorner \llbracket f \rrbracket \Leftrightarrow & \ulcorner \llbracket e \rrbracket \subseteq \ulcorner \llbracket f \rrbracket & \land & \ulcorner \llbracket e \rrbracket \supseteq \ulcorner \llbracket f \rrbracket \\ \Leftrightarrow & \llbracket e \rrbracket \subseteq \ulcorner \llbracket f \rrbracket & \land & \ulcorner \llbracket e \rrbracket \supseteq \llbracket f \rrbracket \\ \end{array}$

WHAT ABOUT CKA?

$$\begin{split} & \sqsubseteq \llbracket e \rrbracket = \ulcorner \llbracket f \rrbracket \Leftrightarrow & \ulcorner \llbracket e \rrbracket \subseteq \ulcorner \llbracket f \rrbracket \land \land & \ulcorner \llbracket e \rrbracket \supseteq \ulcorner \llbracket f \rrbracket \\ & \Leftrightarrow & \llbracket e \rrbracket \subseteq \ulcorner \llbracket f \rrbracket \land \land & \ulcorner \llbracket e \rrbracket \supseteq \llbracket f \rrbracket \\ & \Leftrightarrow & \llbracket \mathcal{N}(e) \rrbracket \subseteq \ulcorner \llbracket \mathcal{N}(f) \rrbracket \land \ulcorner \llbracket \mathcal{N}(e) \rrbracket \supseteq \llbracket \mathcal{N}(f) \rrbracket) \end{split}$$

WHAT ABOUT CKA?

$\begin{bmatrix} \Box \\ e \end{bmatrix} = \overline{\Box} \llbracket f \rrbracket \Leftrightarrow \overline{\Box} \llbracket e \rrbracket \subseteq \overline{\Box} \llbracket f \rrbracket \land \overline{\Box} \llbracket e \rrbracket \supseteq \overline{\Box} \llbracket f \rrbracket \land \overline{\Box} \llbracket e \rrbracket \supseteq \overline{\Box} \llbracket f \rrbracket \land \overline{\Box} \llbracket e \rrbracket \supseteq \overline{\Box} \llbracket f \rrbracket \land \overline{\Box} \llbracket e \rrbracket \supseteq \llbracket f \rrbracket \land \overline{\Box} \llbracket e \rrbracket \supseteq \llbracket f \rrbracket \land \overline{\Box} \llbracket e \rrbracket \supseteq \llbracket f \rrbracket \land \overline{\Box} \llbracket e \rrbracket \supseteq \llbracket f \rrbracket$

DEA OF THE ALGORITHM

Problem

Let $\mathcal{N}_1,\mathcal{N}_2$ be well behaved nets. Is it true that for every run R_1 of \mathcal{N}_1 there is a run R_2 in \mathcal{N}_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)?$

[DEA OF THE ALGORITHM

Problem

Let $\mathcal{N}_1, \mathcal{N}_2$ be well behaved nets. Is it true that for every run R_1 of \mathcal{N}_1 there is a run R_2 in \mathcal{N}_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)?$

is build an automaton \mathscr{A}_1 for $\llbracket \mathcal{N}_1 \rrbracket$

[DEA OF THE ALGORITHM

Problem

Let $\mathcal{N}_1,\mathcal{N}_2$ be well behaved nets. Is it true that for every run R_1 of \mathcal{N}_1 there is a run R_2 in \mathcal{N}_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)?$

 \mathbb{I} Build an automaton \mathscr{A}_1 for $\llbracket \mathcal{N}_1
rbracket$

For Build an automaton \mathscr{A}_2 for $\llbracket \mathcal{N}_1
rbracket \cap \llbracket \mathbb{N}_2
rbracket$

[DEA OF THE ALGORITHM

Problem

Let $\mathcal{N}_1,\mathcal{N}_2$ be well behaved nets. Is it true that for every run R_1 of \mathcal{N}_1 there is a run R_2 in \mathcal{N}_2 such that

 $\mathcal{P}om(R_1) \sqsubseteq \mathcal{P}om(R_2)?$

For Build an automaton \mathscr{A}_2 for $\llbracket \mathcal{N}_1
rbracket \cap \llbracket \mathbb{N}_2
rbracket$

```
\mathbb{I} = [\mathcal{N}_1] \subseteq {}^{\sqsubseteq} [\mathcal{N}_2] \text{ if and only if } \mathcal{L}(\mathscr{A}_1) = \mathcal{L}(\mathscr{A}_2).
```

TRANSITION AUTOMATON

TRANSITION AUTOMATON

{C,D}

{*D*,*E*}

)......(2] 8)**→**[]→(6

).....(D →(A)→ **→(** G)→

h

}.....).....(2)......(5 8 · 6 ······ 6 ······ 6).....(3`

)......(D \rightarrow (A) \rightarrow **→(** G)→ $h \rightarrow F$

h

$$\begin{array}{c} 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 1 & & \\ 2 & & & \\$$

$\rightarrow \underbrace{(s_0)}_{t_1} \underbrace{(s_1)}_{\varepsilon_2} \underbrace{\varepsilon}_{s_2} \underbrace{(s_2)}_{t_a} \underbrace{(s_3)}_{\varepsilon_4} \underbrace{(s_4)}_{\varepsilon_5} \underbrace{(s_5)}_{\varepsilon_5} \underbrace{(s_6)}_{\varepsilon_5} \underbrace{(s_7)}_{\varepsilon_5} \underbrace{(s_7)}_{\varepsilon_6} \underbrace{(s_7$

Reduction to automata

Let \mathcal{N}_1 and \mathcal{N}_2 be some polite nets, of size n, m.

Lemma

There is an automaton $\mathscr{A}(\mathcal{N}_1)$ with $\mathcal{O}(2^n)$ states that recognises the set of accepting runs in \mathcal{N}_1 .

Reduction to automata

Let \mathcal{N}_1 and \mathcal{N}_2 be some polite nets, of size n, m.

Lemma

There is an automaton $\mathscr{A}(\mathcal{N}_1)$ with $\mathcal{O}(2^n)$ states that recognises the set of accepting runs in \mathcal{N}_1 .

Lemma

There is an automaton $\mathcal{N}_1 \prec \mathcal{N}_2$ with $\mathcal{O}(2^{n+m+nm})$ states that recognises the set of accepting runs in \mathcal{N}_1 whose pomset belongs to $\Box[\mathcal{N}_2]$.

DECIDABILITY + COMPLEXITY

Theorem

Given two expressions $e, f \in \mathbb{E}$, we can test if $\llbracket e \rrbracket \subseteq {}^{\sqsubseteq}\llbracket f \rrbracket$ in ExpSpace.

Proof.

- n Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
- 2) Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
- 3) compare them.

DECIDABILITY + COMPLEXITY

Theorem

Given two expressions $e, f \in \mathbb{E}$, we can test if $\llbracket e \rrbracket \subseteq {}^{\sqsubseteq}\llbracket f \rrbracket$ in ExpSpace.

Proof.

- D Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
- 2) Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
- 3) compare them.

Theorem

The problem CKA is ExpSpace-hard.

(Universality problem for regular expressions with interleaving)

🕼 Mayer 🕈 Stockmeyer, "The complexity of word problems - this time with interleaving", 1994.

DECIDABILITY + COMPLEXITY

Theorem

Given two expressions $e, f \in \mathbb{E}$, we can test if $\llbracket e \rrbracket \subseteq {}^{\sqsubseteq}\llbracket f \rrbracket$ in ExpSpace.

Proof.

- D Build $\mathcal{N}(e)$ and $\mathcal{N}(f)$;
- 2) Build $\mathscr{A}(\mathcal{N}(e))$ and $\mathcal{N}(e) \prec \mathcal{N}(f)$;
- 3) compare them.

Theorem

The problem CKA is ExpSpace-hard.

(Universality problem for regular expressions with interleaving)

📧 Mayer 🕈 Stockmeyer, "The complexity of word problems - this time with interleaving", 1994.

Corollary: The problem CKA is ExpSpace-complete.

 \mathbb{E}

 $\mathbb{E} \\ \left| \begin{bmatrix} - \end{bmatrix} \right| \\ \mathcal{P}(\mathbb{P})$

I. Completeness

I. Completeness

1. Completeness

FURTHER QUESTIONS

FURTHER QUESTIONS

F Can we extend the algorithm to a larger class of Petri nets?

The Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

The Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can | have tests?

The Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can | have tests?

Might I dream of adding names?

The Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

🕼 Can I have tests?

Might I dream of adding names?

🕼 Insert you favourite operator here ...

THAT'S ALL FOLKS!

Thank you!

See more at: http://paul.brunet-zamansky.fr
OUTLINE

OUTLINE

1. Introduction

II. Completeness

III. Decidability & Complexity

IV. Summary and Outlook