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KLEENE ALGEBRA

Equivalence of sequential proarams

A Kleene alaerra is structure (K,0, 1, +, -, *) such that:
n (K,0,1,+, ) is an idempotent semiring;
»H VxeK, 1+x-x"=x%5
HVx,y,ze K, x+y-z<z=y" -x<z

Theorem

KAFe=f< L(e)=L(f).

B Kroe, "A Complete System of B-Rational ldentities”, 1990.

B Kozen, "A Completeness Theorem £or Kleene Alaerras and the Alcerra of Reaular Events”,
199,

B Kozen < Silva, "Left-Handed Completeness”, 2012
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Equivalence of sequential proarams

Completeness

Kleene Alzerra
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reagular languaces

v
finite state automata

Kleene theorem
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CONCURRENT KLEENE ALGEBRAS
E.quivalence of parallel proarams

eefeEE:=0 | 1| a| e+f | e-f | e | e]|f

Bi-Kleene Alcerra Concurrent Kleene Alcerra
series-rational down-closed
pomset languaces series-rational lancuaces

| |

automata ? automata ?
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RATIONAL POMSET LANGUAGES

eefeEu=a | 0| 1| ef | el|f]| e+f | e

[[a]]:{ g } m={ |}

[0] =0 [e + f] =[e] U [f]
le- ] =[e] - [f] le || 1 =[el Il [f]
[e] = | [e]”
neN
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RATIONAL POMSET LANGUAGES

e,feEx=a | 0| 1| e-f | el|lf| e+tf| e

[[aﬂ:={ g } m={ |}

[0] =0 [e + f] =[e] U [f]
le- ] =[e] - [f] le || 1 =[el Il [f]
[e] = | [e]”
neN

Definition
A set of pomsets S is called a8 rational pomset lanauace £ there is an
expression e € E such that S = [e].
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KLEENE ALGEBRA

Equivalence of sequential proarams

A Kleene alaerra is structure (K,0, 1, +, -, *) such that:
n (K,0,1,+, ) is an idempotent semiring;
»H VxeK, 1+x-x"=x%5
HVx,y,ze K, x+y-z<z=y" -x<z

Theorem

KAFe=f< L(e)=L(f).

B Kroe, "A Complete System of B-Rational ldentities”, 1990.

B Kozen, "A Completeness Theorem £or Kleene Alaerras and the Alcerra of Reaular Events”,
199,

B Kozen < Silva, "Left-Handed Completeness”, 2012
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BI-K LEENE ALGEBRA

A Bi-Kleene alaerra is structure (K,0,1,+, -, *, ||) such that:
» (K,0,1,+,-) is an idempotent semiring;
2 Vx e K, 1+ x-x"=x%5
» VX, y,zeK x+y-z<z=y" -x<z
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BI-K LEENE ALGEBRA

A Bi-Kleene alaerra is structure (K,0,1,+, -, %,
» (K,0,1,+,-) is an idempotent semiring;
D VxeK, 1+x:-x" =x%5

) such that:

» VX, y,zeK x+y-z<z=y" -x<z
w» (K,0,1,+,]) is 8 commutative idempotent semiring.

Theorem |

biKA e = f & [e] = [f].

B Laurence & Struth, "Completeness theorems for ei-Kleene alaerras and series—parallel
rational pomset lancuaaes”, 2014+
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POMSET ORDER

X

Detinition
P C P, if there is a function ¢ : P, — P; such that:
n @ is 8 Bljection
2y  Preserves larels
3) ( preserves ordered pairs

B Gischer, "The equational theory of pomsets”, 988.
B Grarowski, "On partial lanauaces”, 98],
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POMSET ORDER

X

Definition
P1 C P if there is a function ¢ : P, — P; such that:
b @ is a8 Bijection
2y @ preserves larels

3) ( preserves ordered pairs

B Gischer, "The equational theory of pomsets”, 988.
B Grarowski, "On partial lanauaces”, 98],
Notation: 5S:={P |3P € S: PC P'}.

Paul Brunet 1©/38



CONCURRENT KLEENE ALGEBRA

A concurrent Kleene alaekra is Bi-Kleene alaerra (K,0,1,+, -, , ||) such that:

(allb)-(clid)<(a-c)l(b-d)
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CONCURRENT KLEENE ALGEBRA

A concurrent Kleene alaekra is Bi-Kleene alaerra (K,0,1,+, -, , ||) such that:

(allb)-(clid)<(a-c)l(b-d)

X

Theorem

CKAF e=f = E[e] = 5[f].

B Hoare, M ller, Struth = Wehrman, "“Concurrent Kleene Alaerra”, 2009.
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QOUTLINE

Completeness”, 2018

Kappé, Brunet, Silva & Z anasi, "Concurrent Kleene Alaegra: Free Model and

|. Completeness

.

(-4
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Detinition N R

An expression el is a dosure of e if CKA I el=e and [el] = =[e].

Lenmma
I# every series-rational expression admwits a closure, the axioms of CKA

are complete with respect to down-closed pomset languaces.

B Laurence 5 Struth, "Completeness theorems £or pomset lancuages and concurrent Kleene
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SYNTACTIC CLOSURES ARE NICE...

Detinition N

22
An expression el is a dosure of e if CKA I el=e and [el] = =[e].

Lenmma

I# every series-rational expression admwits a closure, the axioms of CKA
are complete with respect to down-closed pomset languaces.

B Laurence ¢ Struth, "Completeness theorems £or pomset lanauaaes and coneurrent Kleene
Alaesras”| (draft).
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Detinition N R
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Proof. Assume -[e] = =[]
By (1), it means that [el] = [f!].

By completeness of biKA, it follows that biKA F el= ], thus CKA I e|= f].
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... BUT DO THEY EXIST?

Let’s try and compute the closure By induction:

= 0l=0

w 1l=1

B al=a

= (e f){="el=FFf]

W (e f)l=el fl

()= el"

(el £){=277

We strenathen our induction, By assuming that we have closures for
h every strict sueterm of e || f,

2 every term with smaller width than e || f.
We write the corresponding strict orderina <.

Paul Brunet
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WHO'S SMALLER THAN A PARALLEL PRODUCT?

u € [e]
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(Case_ I: x is Parallel.)
y
K= | B e SR
z
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WHO'S SMALLER THAN A PARAI

LEL PRODUCT?

uy
" € [e]
Vy
" e [f]

<
(Case_ I: x is Parallel.)
y Cullw
K= | B e SR
z Cuy ” Vz

Paul Brunet L/38



LEL SPLICING AND PRECLOSURE

|

|Par‘alle_l splicing |
A. is 38 finite relation over [E such that:

ullvelel]e I Acr:uellf]Ave]r].

Paul Brunet /38
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\LLEL SPLICING AND PRECLOSURE

I

|Par‘alle_l SP'iQif\C=|
A. is 38 finite relation over [E such that:

ullvelel]e I Acr:uellf]Ave]r].

eaf=ellf+ Y (W)I(r).

/Aerl’

Lenmma

ullveSle|| fleulveleof].

CKAFeof=e|f.

Paul Brunet
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Paul Brunet

SMALLER

ARALLEL PRODUCT?

u € [e]

% e [f]

Case |: x is parallel.

(Case 2: xis seaue_r\—tial.)
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WHO'S SMALLER THAN A PARALLEL PRODUCT?

C v S

] ] <

Case |: x is parallel.

(Case. 2: xis seaue_r\—tial.)
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SEQUENTIAL SPLICING

| Seauenttial splicing I

V. is 8 finite relation over [E such that:

u-vele]e A Ver:uelllAve]r].
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SEQUENTIAL SPLICING
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V. is 8 finite relation over [E such that:
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SEQUENTIAL SPLICING

| Seauenttial splicing I

V. is 8 finite relation over [E such that:

u-vele]e A Ver:uelllAve]r].

u-veSe|fleu-vele| f+ Z (le ® 1) - (re || re)d]
le Ve re
/foI’f

Proelem: r. || rr is not always smaller than e || ..

Paul Brunet 19/38
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AND THEN, SOME MAGIC HAPPENS...

= \We repeat the construction to et successive equations, involving
closures.

= Only a finite nuvker of uNnkNown closures appear.
= These equations can Be structured as a linear system.

= With a fancy fixpoint theorem, we compute the least solution of the
system.

& This solution is a closure.

Paul Brunet 20/38



COMPLETENESs OF CKA

Lenmma
Every series-rational expression admits a closure.

Theorem
CKA & e=f & S[e] = [f].

Implementation: https://doi.org/10.5281/zenodo.926651.

Paul Brunet 21/38


https://doi.org/10.5281/zenodo.926651

QOUTLINE

|. Completeness
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@EJ'E'E_ENE ’ Brunet, Pous ¢ Struth, "On decidagility of concurrent Kleene alaesra’, 2001

Il. Decidarility = Complexity

- _\ \
[-] Petri Nets
P (P) 4_/
=(-)
(P®) )
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TWO DECISION PROBLEMS

biKA
Given two expressions e, f, are [e] and [f] equal?

CKA
Given two expressions e, f, are =[e] and =[f] equal?
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LABELLED PETRI NETS

» skip

Transition-pomset
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LABELLED PETRI NETS

Pomset—trace

El
—
» skip T b T
c

Transition-pomset
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RECOGNISABLE POMSET LANGUAGES

|Lar\c=uac=e aenerated By a r\e—tI

|[[./\/ ] is the set of pomset—traces of accepting runs of N.

Definition

A set of pomsets S is a8 recoanisarle pomset lancuace if there is a net NV
such that S = [N].

Paul Brunet
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READING A POMSET IN A NET
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READING A POMSET IN A NET

a\d O :>d
b—>@/
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FROM EXPRESSIONS "E'@ AUE'GMA’E'A
N(0)=—0 O— (a) = >O0—fa}>0—

«m

N (e |l &) IMI
Na- o) =@ o _BD—f—@ = 1B

|
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SOLVING biKA

Lenmma

[e] = IV (e)]-

Corollary: Rational pomset languaces are recoanisarle.

Paul Brunet
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SOLVING biKA

Lemma

[e] = IV (e)]-

Corollary: R ational pomset lanauaces are recoanisagle.

Theorem
Testina containment of pomset—trace languaces of two Petri nets is an

ExpSpace-complete proglem.

B Jatecaonkar = Meyer, "Deciding true concurrency euivalences on safe, finite nets”, 1996.

Paul Brunet 29/38



SOLVING biKA

Lemma
[e] = [V (e)]-

Corollary: R ational pomset lanauaces are recoanisagle.

Theorem
Testina containment of pomset—trace languaces of two Petri nets is an

ExpSpace-complete proglem.

B Jatecaonkar = Meyer, "Deciding true concurrency euivalences on safe, finite nets”, 1996.

Corollary: The proelem biKA lies in the class ExpSpace.

Paul Brunet 29/38



WHAT ABOUT CKA?

“[e] = °[7]

30/38
Paul Brunet



WHAT ABOUT CKA?

“]=°I1+ SEICEIl A el 2 EIf]

Paul Brunet 30/38



WHAT ABOUT CKA?

“]=°I1+ S[ICEIFl A Ele] 2 EIf
& [DCEIT A Sl 2]

Paul Brunet 30/38



WHAT ABOUT CKA?

Slel=CIfle Sl S5l A e] 2 =[]
&  [CSEIT A e] 2 [f]
& W (e)] € SV (A A SV (e)] 2 IV (7]

[
all
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WHAT ABOUT CKA?

=511 SISl A Cle) 2 O]
& [ICSEI] A Sl 21
& W (] € W (A1 A SV (@] 2 IV ()]

Proglem

Let N1, N> e well Behaved nets. Is it true that for every run R; of N
there is a run R, in A such that

Pom (Ry) T Pom(Rs)?
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Proelem

Let N1, N> e well Behaved nets. [s it true that for every run R; of N
there is a run R, in A5 such that

Pom (Ry) T Pom(R2)?

B Build an automaton o for [Ni]
= Build an automaton % for [Ni] N E[N;]

@ V1] C E[NL] if and only if £ (a4) = L ().
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TRANSITION AUTOMATON
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MASSAGING RUNS
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REDUCTION TO AUTOMATA

Let N; and N> Be some polite nets, of size n, m.

Lemma
There is an automaton o7 (N1) with O(2") states that recoanises the set
of accepting runs in M.
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DECIDABILITY + COMPLEXITY

Theorem
Given two expressions e, f € B, we can test if [e] C 5[f] in ExpSpace.

[{geled
n euild N (e) and N (f);
2 Build 7 (N (e)) and N (e) < N (f);
3) compare them.
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Corollary: The proelem CKA is ExpSpace-complete.
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FURTHER QUESTIONS
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THATS ALL FOLKS!

Thank you!

See more at:
http://paul.brunet-zamansky.fr
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