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Kleene Algebra
Equivalence of sequential programs

(x := 1; y := 2); (x := y ⊕ y := x) ≡ x := 1; (y := 2; x := y)⊕ (y := 2; y := x)

(x1 · y2) · (xy + yx) = x1 · (y2 · (xy + yx)) (associativity of ·)
= x1 · ((y2 · xy) + (y2 · yx)) (distributivity)
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Kleene Algebra
Equivalence of sequential programs

A Kleene algebra is structure 〈K , 0, 1,+, ·, ?〉 such that:

1) 〈K , 0, 1,+, ·〉 is an idempotent semiring;

2) ∀x ∈ K , 1 + x · x? = x?;

3) ∀x , y , z ∈ K , x + y · z ≤ z ⇒ y ? · x ≤ z .

KA ` e = f ⇔ L (e) = L (f ) .

Theorem

Krob, “A Complete System of B-Rational Identities”, 1990.

Kozen, “A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events”,

1991.

Kozen & Silva, “Left-Handed Completeness”, 2012.
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Concurrent Kleene Algebras
Equivalence of parallel programs

e, f ∈ E ::= 0 | 1 | a | e + f | e · f | e? | e ‖ f

bi-Kleene Algebra

series-rational

pomset languages

automata ?

Concurrent Kleene Algebra

down-closed

series-rational languages

automata ?
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Rational pomset languages

e, f ∈ E ::= a | 0 | 1 | e · f | e ‖ f | e + f | e?.

JaK :=

{
a

}
J1K :=

{ }
J0K :=∅ Je + f K :=JeK ∪ Jf K

Je · f K :=JeK · Jf K Je ‖ f K :=JeK ‖ Jf K

Je?K :=
⋃
n∈N

JeKn

A set of pomsets S is called a rational pomset language if there is an

expression e ∈ E such that S = JeK.

Definition
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bi-Kleene algebra

A bi-Kleene algebra is structure 〈K , 0, 1,+, ·, ?, ‖〉 such that:

1) 〈K , 0, 1,+, ·〉 is an idempotent semiring;

2) ∀x ∈ K , 1 + x · x? = x?;

3) ∀x , y , z ∈ K , x + y · z ≤ z ⇒ y ? · x ≤ z ;

4) 〈K , 0, 1,+, ‖〉 is a commutative idempotent semiring.

biKA ` e = f ⇔ JeK = Jf K.

Theorem

Laurence & Struth, “Completeness theorems for bi-Kleene algebras and series-parallel

rational pomset languages”, 2014.
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Pomset order

a b

c d

a b

c d

v

P1 v P2 if there is a function ϕ : P2 → P1 such that:

1) ϕ is a bijection

2) ϕ preserves labels

3) ϕ preserves ordered pairs

Definition

Gischer, “The equational theory of pomsets”, 1988.

Grabowski, “On partial languages”, 1981.

Notation: vS := {P | ∃P ′ ∈ S : P v P ′ }.
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Concurrent Kleene algebra

A concurrent Kleene algebra is bi-Kleene algebra 〈K , 0, 1,+, ·, ?, ‖〉 such that:

(a ‖ b) · (c ‖ d) ≤ (a · c) ‖ (b · d)

a c

b d

a c

b d

v

CKA ` e = f ⇒ vJeK = vJf K.

Theorem

Hoare, Möller, Struth & Wehrman, “Concurrent Kleene Algebra”, 2009.
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Completeness”, 2018

Brunet, Pous & Struth, “On decidability of concurrent Kleene algebra”, 2017
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Syntactic closures are nice...

An expression e↓ is a closure of e if CKA ` e↓= e and Je↓K = vJeK.

Definition

(1) (2)

If every series-rational expression admits a closure, the axioms of CKA
are complete with respect to down-closed pomset languages.

Lemma

Laurence & Struth, “Completeness theorems for pomset languages and concurrent Kleene

Algebras”, (draft).

Proof. Assume
vJeK = vJf K.

By (2), it means that Je↓K = Jf ↓K.
By completeness of biKA, it follows that biKA ` e↓= f ↓, thus CKA ` e↓= f ↓.
By (1) we get that CKA ` e = e↓= f ↓= f . �
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... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f )↓= e↓ +f ↓
(e · f )↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f )↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.
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2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38



... but do they exist?

Let’s try and compute the closure by induction:

0↓= 0

1↓= 1

a↓= a

(e + f )↓= e↓ +f ↓
(e · f )↓= e↓ ·f ↓
(e?)↓= e↓?

(e ‖ f )↓=???

We strengthen our induction, by assuming that we have closures for

1) every strict subterm of e ‖ f ,

2) every term with smaller width than e ‖ f .

We write the corresponding strict ordering ≺.

Paul Brunet 15/38



Who’s smaller than a parallel product?

∈ JeK

∈ Jf K

x =

v

u

v

uy

uz

vy

vz

Case 1: x is parallel.
y

z

v uy ‖ vy

v uz ‖ vz

Case 1: x is parallel.

Case 2: x is sequential.
y z

v

v

v v
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Parallel splicing and preclosure

∆e is a finite relation over E such that:

u ‖ v ∈ JeK⇔ ∃l ∆e r : u ∈ JlK ∧ v ∈ JrK.

Parallel splicing

e � f = e ‖ f +
∑

l∆e‖f r

(l↓) ‖ (r↓) .

u ‖ v ∈ vJe ‖ f K⇔ u ‖ v ∈ Je � f K.

CKA ` e � f = e ‖ f .

Lemma
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Sequential splicing

∇e is a finite relation over E such that:

u · v ∈ JeK⇔ ∃l ∇e r : u ∈ JlK ∧ v ∈ JrK.

Sequential splicing

u · v ∈ vJe ‖ f K⇔ u · v ∈ Je ‖ f +
∑

le ∇e re
lf ∇f rf

(le � lf ) · (re ‖ rf )↓K

Problem: re ‖ rf is not always smaller than e ‖ f ...
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And then, some magic happens...

We repeat the construction to get successive equations, involving

closures.

Only a finite number of unknown closures appear.

These equations can be structured as a linear system.

With a fancy fixpoint theorem, we compute the least solution of the

system.

This solution is a closure.
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Completeness of CKA

Every series-rational expression admits a closure.

Lemma

CKA ` e = f ⇔ vJeK = vJf K.

Theorem

Implementation: https://doi.org/10.5281/zenodo.926651.
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Two decision problems

Given two expressions e, f , are JeK and Jf K equal?

biKA

Given two expressions e, f , are
vJeK and

vJf K equal?

CKA

Paul Brunet 24/38



Labelled Petri nets

Transition-pomset

Pomset-trace

a

b

c

τ

a

b
τ

c

τ

skip
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Recognisable pomset languages

JN K is the set of pomset-traces of accepting runs of N .

Language generated by a net

A set of pomsets S is a recognisable pomset language if there is a net N
such that S = JN K.

Definition

Paul Brunet 26/38



Reading a pomset in a net

a

b

c

d
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From expressions to automata
N (0) := N (1) := N (a) := a

N (e1 + e2) :=

ι1 f1e1

ι2 f2e2

N (e1 ‖ e2) :=

ι1 f1e1

ι2 f2e2

N (e1 · e2) := ι1 f1e1 ι2 f2e2

N (e?) := ι fe
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Solving biKA

JeK = JN (e)K.

Lemma

Corollary: Rational pomset languages are recognisable.

Testing containment of pomset-trace languages of two Petri nets is an

ExpSpace-complete problem.

Theorem

Jategaonkar & Meyer, “Deciding true concurrency equivalences on safe, finite nets”, 1996.

Corollary: The problem biKA lies in the class ExpSpace.
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What about CKA?

vJeK = vJf K

⇔ vJeK ⊆ vJf K ∧ vJeK ⊇ vJf K
⇔ JeK ⊆ vJf K ∧ vJeK ⊇ Jf K
⇔ JN (e)K ⊆ vJN (f )K ∧ vJN (e)K ⊇ JN (f )K

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem
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Idea of the algorithm

Let N1,N2 be well behaved nets. Is it true that for every run R1 of N1

there is a run R2 in N2 such that

Pom (R1) v Pom (R2)?

Problem

build an automaton A1 for JN1K

build an automaton A2 for JN1K ∩ vJN2K

JN1K ⊆ vJN2K if and only if L (A1) = L (A2).
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Transition automaton

A

B

C

D

E F

G

t1
a

ta

b

tb
c

tc

t2

{A} {B,C}

{C ,D}

{B,E}

{D,E}

{B,F}

{D,F} {G}
t1

ta

ta

ta

tb

tb

tc

tc

t2
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Massaging runs

v
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Reduction to automata

Let N1 and N2 be some polite nets, of size n,m.

There is an automaton A (N1) with O (2n) states that recognises the set

of accepting runs in N1 .

Lemma

There is an automaton N1 ≺ N2 with O (2n+m+nm) states that recognises

the set of accepting runs in N1 whose pomset belongs to
vJN2K.

Lemma
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Decidability & Complexity

Given two expressions e, f ∈ E, we can test if JeK ⊆ vJf K in ExpSpace.

Theorem

Proof.

1) build N (e) and N (f );

2) build A (N (e)) and N (e) ≺ N (f );

3) compare them.

�

The problem CKA is ExpSpace-hard.

Theorem

(Universality problem for regular expressions with interleaving)

Mayer & Stockmeyer, “The complexity of word problems – this time with interleaving”, 1994.

Corollary: The problem CKA is ExpSpace-complete.
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Further questions

Can we extend the algorithm to a larger class of Petri nets?

What about the parallel star?

Can I have tests?

Might I dream of adding names?

Insert you favourite operator here...
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That’s all folks!

Thank you!

See more at:

http://paul.brunet-zamansky.fr
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