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Abstract. In this paper we present bracket algebra, a nominal framework that can be
used in reasoning about programs with interleaved scopes. We construct a hierarchy of
languages based on their memory and binding power. We present a decision procedure for
program equivalence and containment for a large class of programs.

1 Introduction

Program equivalence is a core subject in programming language semantics and formal verification.
Despite being an undecidable problem in general, it is easier to solve in many cases of practical
interest and therefore has been studied by many authors from different communities (see e.g.
recent overview by Strichman [7]).

In this paper we will focus our attention in programs where resources, stored in variables
being manipulated by the program, can be explicitly allocated and freed generating so-called
dynamically-scoped binding of variables. The choice of name for the variables, between the al-
location and the release of the resource, should not affect program equivalence. In addition,
and more challengingly, possible scope interleaving has to be accounted for in any techniques
developed for such programs.

Nominal techniques have been developed for reasoning about abstract syntax with statically-
scoped binding and very little is known about how these can be extended to dynamically-scoped
binding. In this paper we take inspiration from previous work by Gabbay, Ghica, and Petrişan
[2] who introduced a syntactic notion of dynamic sequences and develop an algebraic framework
to reason about program equivalence in the presence of interleaved scopes.

To motivate the work in the paper consider the following three programs, which manipulate
the contents of variables x and y and which we would like to prove equivalent.
int i;
int j;
j:=x;
x:=y;
for(i=1,i<=10,i++)

x++;
x++;
free(i);
y:=j;
free(j);

int i;
int j;
j:=x;
x:=y;
x++;
for(i=1,i<=10,i++)

x++;
free(i);
y:=j;
free(j);

int j;
int k;
k:=x;
x:=y;
for(j=1,j<=10,j++)

x++;
x++;
free(j);
y:=k;
free(k);

P1 P2 P3
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All three programs start with variables x and y holding values x0 and y0, respectively, and
finish with variables x and y holding value y0 + 11 and x0, respectively.

The first two programs – P1 and P2 – can easily be proven equivalent without any nominal
techniques using, for instance, (plain) Kleene algebra [4]. P2 and P3 are however out of the scope
of the current algebraic techniques, both because of the renaming in local variables and the fact
that those names are used in between (de-)allocation of different resources. The challenge can
neatly be summarised if we depict the the variable references of the program along a timeline.

int i

j:=x i:=1int j

x:=y i<=10?

x++

i++

i<=10?

free i

y:=j

free j

int j

k:=x k:=1int k

x:=y k<=10?

x++

j++

j<=10?

free j

y:=k

free k

As the figures above demonstrate the reference structure of the variables in both programs
is exactly the same. However, the fact that the scopes are interleaved make reasoning about
equivalence of these programs out of reach of existing methods.

In this paper we will develop a framework – bracket algebra – where we can reason alge-
braically about the programs above in the same way as we would using Kleene algebra to reason
about equivalence of simple imperative programs. At the core of our development will be consid-
ering allocation and deallocation of resources as integral part of the program traces. Our traces
will be built from two (nominal) alphabets, one containing program instructions x, y, z, . . . ∈ X
and the other one containing allocation and deallocation instructions – 〈a and 〉a – for every
resource name a ∈ A. For instance the first program above would have traces of the shape
〈i 〈j ajb cid 〉i ej 〉j . Here we use the superscript to denote the fact that those letters stand for
parts of the program that use a certain local variable. Proving equivalence of the above three
programs would amount to checking equivalence of the expressions:

〈i 〈j ajb cid 〉i ej 〉j (P1) 〈i 〈j ajb dci 〉i ej 〉j (P2) 〈j 〈k akb cjd 〉j ek 〉k (P3)

It is clear that for (P1) and (P2) we just need to show cid ≡ dci, which follows easily when
expanding ci to the expression increasing the value of x 10 times (that is, executing instruction
d 10 times). For (P2) and (P3), in addition to the above swap, we need to rename in (P3) j to i
and k to j. To have algebraic laws doing this renaming in a sound (and complete) way we need
to be careful with the scope of the variables and the fact that their allocation and deallocation
is not done in the same order (hence the mismatched brackets in the above expressions).

This paper develops a general framework to reason about program traces like the above.
We develop the framework also for sets of traces – languages – and this lead us to naturally
look at properties of languages and their expressive power when taking into account several
properties stemming from their nominal nature – e.g. finite support vs bounded support – and
from their binding power. We will show that variations on these generate very different classes
of languages and organise those in a hierarchy. This is a first detailed account of a nominal
language hierarchy, which has been an open problem for some years now in the field of nominal
language theory. The reason why this is more challenging that in the classical case is that in the
presence of nominal alphabets the hierarchy turns out to be much finer (e.g. non-deterministic
and deterministic nominal automata are not equi-expressive). In a companion paper [1], we
provide a Kleene theorem for (non-deterministic) nominal-automata, bridging the syntactic and
semantic description of nominal regular languages.
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We structure the paper as follows. We first set up the basic definitions to reason about
traces/words that contain allocation and deallocation binders, possibly interleaved (Section 2).
This leads to the development of a new nominal transducer model that is used to devise an
algorithm to decide α-equivalence of words (Section 3). The framework is then extended to be able
to reason about languages (Section 4), that is sets of traces, and this leads us in an exploration
of the different classes of languages that can be defined in this setting. We present a hierarchy
based on on the languages memory and binding power (Section 5). Finally, we present a decision
procedure for language equivalence and containment for a subclass of languages (Section 6).

2 Preliminaries

Words, languages, and sets The set of words over an alphabet Σ is written Σ?. The empty
word is denoted by ε, the concatenation of words u and v is written uv, and |u| is the length of u.
If w is a word over the alphabet Σ and x ∈ Σ, then |w|x is the number of occurrences of x in w.
We sometimes identify words with the set of letters occurring in them, writing x ∈ w to denote
that x appears in w, i.e. |w|x 6= 0. We denote the ith letter of a word u by ui, for 0 < i 6 |u|.

We denote the set of finite subsets of A by Pf (A) and, for A finite, its cardinal by #A ∈ N.

Nominal sets We fix an infinite set A of names, and write SA the set of finitely supported
permutations over A. These are bijections π such that there is a finite set A ⊆ A such that
a /∈ A⇒ π(a) = a. The inverse of a permutation π is written π−1 . The permutation exchanging
a and b, and leaving every other name unchanged, is written (a b). A set X is called nominal
if there are functions − ·− : SA ×X → X and supp(−) : X → Pf (A), respectively called the
action and the support, such that ∀x ∈ X, ∀π, π′ ∈ SA, we have:

(∀a ∈ supp(a), π(a) = a)⇒ π · x = x. (1)

supp(π · x) =
{
a ∈ A

∣∣ π−1(a) ∈ supp(x)
}
. (2)

π · (π′ · x) = (π ◦ π′) · x. (3)

Intuitively, this means that we may replace a name by another in any element of X, and that
each element of X only depends on a finite number of names. We say that the name a is fresh
for the variable x, and write a # x, whenever a /∈ supp(x).

Remark 2.1. In [6] a nominal set is defined as a SA-action such that every element has some finite
support. From conditions (1) and (3) we infer that X is a nominal set as in [6]. Furthermore,
condition (2) enforces that supp(x) is the least finite set that supports x, so our notion of support
coincides with the the one introduced in [6]. For Coq implementation considerations, we opted
for explicitly including the support function in the definition.

We fix for the remainder of the paper a nominal set X of variables, representing atomic
instructions or events.

3 Words over an alphabet with binders

In this section, we will set up the scene for our algebraic framework. We will introduce the
basic definitions on words over an alphabet with binders and alpha-equivalence (Section 3.1)
which are straightforward adaptations from [2]. We will then present a novel transducer model
(Section 3.2) that is powerful enough to be a sound and complete mechanism (Section 3.3) to
capture alpha-equivalence of words. Section 3.4 contains the details of the decision procedure

https://coq.inria.fr/
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for deciding alpha equivalence of words – in essence we present a compilation procedure from a
pair of words to a transition relation of the respective transducer. We study the properties of the
labelled transition system induced by the transducer and show that the several ways to compare
the states of this LTS (simulation, bisimulation, etc) are equally expressive.

3.1 α-equivalence of words with binders

The traces we will consider in this paper will consist of words built out of an alphabet consisting
of variables x ∈ X and left and right binders, respectively written 〈a and 〉a . These binders
represent the creation and destruction of names. For instance, one might think of 〈a as an
instruction allocating a new memory location, and linking it to a variable named a. Conversely
the instruction 〉a would free any space allocated to a.

In this what follows we introduce a notion of α-equivalence for these sequences. Because we
are committed to a compositional semantics, we want this relation to be a congruence: if two
words are equivalent, appending to both the same prefix and the same suffix should yield a pair of
equivalent words. We also want to be able to substitute “local” names: for instance the sequence
〈a 〉a should be equivalent to the sequence 〈b 〉b .

Formally, we define our alphabet by �A
X := X∪{〈a | a ∈ A}∪{ 〉a | a ∈ A}. If the sets of atoms

and variables are clear from the context, we simply write �. This alphabet can be endowed with
a nominal structure, by setting π · 〈a= 〈π(a) , π · 〉a = 〉π(a) , and supp(〈a ) = supp( 〉a ) = {a}.
In the following, a word will be an element of �?, that is a finite sequence of letters from the
alphabet �. Words naturally support a nominal structure: the action is defined by applying the
alphabet action letter by letter, and the support is the union of the supports of its letters.

Before we define α-equivalence, we need to introduce the notion of binding power of a word.
The purpose of this notion is to keep track of the occurrences of each name along a word, and
enable us to decide whether a particular name is local to the word, and more generally to get a
precise account of the way the name is used in the word, from the point of view of the context. The
binding monoid B is defined as the free monoid over the three element set {c, f ,d}, quotiented by
the following identities: f · f = f , c · f = c, f · d = d, and c · d = ε. The letters c, f , d represent
that a name might be created, free or destroyed. The first identity reflects the fact that seeing
several free occurrences of the same name in a row is equivalent to seeing a single free occurrence.
For the second and third identities may be interpreted as saying that the information that a name
is created (respectively destroyed) contains the fact that the name is free. The last law states
that creating and then deleting a name hides it from the context: it is as if the name had not
been used at all. An important property of this monoid is the following, as noticed in [2]: every
element of B can be uniquely represented in the form dmfncp, with 〈m,n, p〉 ∈ N× {0, 1} × N.

The binding power of a letter l ∈ � with respect to a name a ∈ A, written Fa (l), as follows:

Fa (〈b ) :=
{

c (a = b)
ε (a 6= b)

Fa ( 〉b ) :=

{
d (a = b)
ε (a 6= b)

Fa (x) :=
{

f (a ∈ supp(x))
ε (a # x)

The function F extends to words naturally as a monoid homomorphism, by setting Fa (ε) = ε and
Fa (lw) = Fa (l) · Fa (w). If Fa (u) = dmfncp with n ∈ {0, 1}, we define da (u) := m, fa (u) := n,
and ca (u) := p. Notice that this is well defined thanks to the uniqueness of such representations.
This function commutes with the action of permutations, in the sense that Fπ(a) (π · u) = Fa (u).

We use the binding power to define the following: a is balanced in the word w, written a � w,
if Fa (w) ∈ {f , ε}; a is α-fresh in w, written a #α w, is Fa (w) = ε; the α-support of w, written
suppα(w), is the set of names a such that Fa (w) 6= ε. Notice that suppα(w) ⊆ supp(w).
Using the previous remark, we get that π(a) #α π · u if and only if a #α u, and similarly for
π(a) ∈ suppα(π · u) and π(a) � π · u.
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We may now define the α-equivalence relation over words. It is the smallest congruence such
that applying the transposition (a b) to a word where a and b are α-fresh yields an equivalent
word. Formally, the relation =α is defined inductively by:

ε =α ε
(αε)

u =α v v =α w
u =α w

(αt)

w1 =α w2 l ∈ �
w1l =α w2l

(αr)
w1 =α w2 l ∈ �

lw1 =α lw2
(αl)

a � u b #α u

〈a u 〉a =α 〈b (a b) · u 〉b
(αα)

The following statements hold:

u =α v ⇒ v =α u (4)
u =α v ∧ u′ =α v′ ⇒ uu′ =α vv

′ (5)
u =α v ⇒ ∀a ∈ A, Fa (u) = Fa (v) (6)

u =α v ⇒ ∀π ∈ SA, π · u =α π · v (7)
u =α v ⇒ |u| = |v| (8)

The propositions (4) and (5) state that =α is symmetric and that concatenation is compatible
with =α, which together with (αε) and (αt) establishes =α as a congruence, while (6), (7), and (8)
are necessary preservation properties of =α. The proofs of these results follow a simple induction
of proof trees.

Note that the deduction system we provided for =α is not a priori equivalent to the informal
description we gave before. However, the correspondence can be proved in the sense that the
same relation is obtained if we replace rule (αα) with the following rule:

a #α u b #α u

u =α (a b) · u
(αα′)

However, this proof is not straightforward: (αα′) obviously implies (αα) (as the latter may be
seen as an instance of the former), but the converse direction is more subtle. Unfortunately, this
is the most important direction, as it is necessary to show that words quotiented by =α form
a nominal set, with the support function suppα(). To obtain this property we will rely on the
transducer presented in the next section.

3.2 A transducer for α-equivalence-checking

The problem that arises when trying to prove statements like (αα) is that α-equivalence is not
preserved in the inductive calls: the property ux =α vy does not entail u =α v. In this section
we introduce a nominal transducer recognising the relation =α. The reachability relation in
this transducer will give us more powerful proof techniques, allowing us to perform proofs by
induction. We will use this transducer for several purposes: it will provide us with a decision
procedure for =α and it will enable us to show that (αα′) is admissible.

Stacks The states of this transducer will consist of lists of pairs of atoms, called stacks in
the following. Before we define the transducer, we introduce some useful notations. Stacks are
generated by the following grammar: s ∈ SF [] | s :: 〈a, b〉, where a, b range over names. Hence
S is isomorphic to (A× A)?. We will also use the notation s :: t for the concatenation of the two
stacks s, t ∈ S. We write p1 (s) for the word over A obtained by erasing the second components
of every pair in s, and symmetrically p2 (s) when we erase the first components. For instance
p1 ([] :: 〈a, b〉 :: 〈c, d〉) = ac, and p2 ([] :: 〈a, b〉 :: 〈c, d〉) = bd.
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Stacks can be endowed with a canonical nominal structure defined by:

π · [] := [] π · (s :: 〈a, b〉) := π · s :: 〈π(a), π(b)〉

supp([]) := ∅ supp(s :: 〈a, b〉) := supp(s) ∪ {a, b} .

Note that supp(s) = supp(p1 (s)) ∪ supp(p2 (s)) = p1 (s) ∪ p2 (s), the last identity using our
shorthand identifying words with the set of letters occurring in them.

The pivotal notions for stacks are the validates predicate and the pop function. We say that
a stack s validates the pair 〈a, b〉, written s |= 〈a, b〉, when the following holds:

(a = b ∧ a /∈ supp(s)) ∨ (∃s′, s′′ ∈ S : s = s′ :: 〈a, b〉 :: s′′ ∧ a /∈ p1 (s
′′) ∧ b /∈ p2 (s

′′)) .

When s validates 〈a, b〉, we may pop the pair from s, yielding the stack s� 〈a, b〉 defined by:

a /∈ supp(s)

s� 〈a, a〉 := s

a /∈ p1 (s
′) ∧ b /∈ p2 (s

′)

(s :: 〈a, b〉 :: s′)� 〈a, b〉 := s :: s′.

We now define the equivalence transducer T . Its state space is S, with initial state [], and the
set of accepting states Sacc consists of all stacks s containing only reflexive pairs, i.e. such that
p1 (s) = p2 (s). The transition relation →T is defined by:

s −[〈a /〈b ]→T s :: 〈a, b〉
s |= 〈a, b〉

s −[ 〉a / 〉b ]→T s� 〈a, b〉
∀a ∈ supp(x), s |= 〈a, π(a)〉

s −[x/π · x]→T s

Note that this relation is functional, in the sense that for every triple 〈s, l, l′〉 ∈ S × � × �
there exists at most one stack s′ such that s −[l/l′]→T s′. We extend the transition relation to
words, defining as usual s −[u/v]→T s′ by saying that s −[ε/ε]→T s and if s −[u/v]→T s′ and
s′ −[l/l′]→T s′′, then s −[ul/vl′]→T s′′. This transducer over an infinite state space is nominal,
as one can easily check that s −[u/v]→T s′ entails π · s −[π · u/π · v]→T π · s′. However, it is not
orbit finite. This seems to be unavoidable since there are infinitely many α-equivalence classes.

3.3 Soundness and completeness

In this section, we show that two words u, v are α-equivalent if and only if there is a path in the
transducer labelled with u/v from [] to some accepting stack.

Theorem 3.1. The relation accepted by the equivalence transducer is exactly =α.

The full proof has been done in Coq, so we will only give a sketch of it here.

Completeness We start by the left-to-right implication: u =α v ⇒ ∃s ∈ Sacc : [] −[u/v]→T s.
This proof is done by induction on the derivation u =α v.

Empty word. If the last rule applied was (αε), we have u = v = ε so we may just pick s to be [].

Transitivity. For transitivity (rule (αt)), we prove a slightly stronger lemma. Given two lists of
atoms of the same length, say A = a1 . . . an and B = b1 . . . bn, we write A ⊗ B for the stack
[] :: 〈a1, b1〉 · · · :: 〈an, bn〉. Given two stacks s, s′ of the same length, the stack s ./ s′ is defined as
p1 (s) ⊗ p2 (s

′).

https://coq.inria.fr/
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Lemma 3.2. Let s1, . . . , s4 be stacks and l1, l2, l3 ∈ � be letters such that s1 −[l1/l2]→T s2,
s3 −[l2/l3]→T s4 and p2 (s1) = p1 (s3), then the following hold:

p2 (s2) = p1 (s4) and s1 ./ s3 −[l1/l3]→T s2 ./ s4.

Proof. By case analysis on the letters l1, l2, l3, using the following auxiliary result: if s |= 〈a, b〉,
s′ |= 〈b, c〉, and p2 (s) = p1 (s

′), then s ./ s′ |= 〈a, c〉 and:

p2 (s� 〈a, b〉) = p1 (s
′� 〈b, c〉) , (s ./ s′� 〈a, c〉) = (s� 〈a, b〉) ./ (s′� 〈b, c〉) .

This is done by a simple case analysis on s |= 〈a, b〉 and s′ |= 〈b, c〉 (remember that the predicate
|= is defined as a disjunction), unfolding the definitions in each case. ut

We may now prove transitivity as a matter of routine, first extending the above Lemma from
letters to words, and then instantiating s1 and s3 with []. The last ingredient consists in noticing
that if s2, s4 ∈ Sacc and p2 (s2) = p1 (s4), then s2 ./ s4 ∈ Sacc, since:

p1 (s2 ./ s4) = p1 (s2) = p2 (s2) = p1 (s4) = p2 (s4) = p2 (s2 ./ s4) .

Right congruence. If the last rule applied was (αr): w1 =α w2 ⇒ w1l =α w2l, then by induction
hypothesis we simply need to check that if s is accepting, then there is another accepting stack
s′ such that s −[l/l]→T s′. This is shown by case analysis on l without effort.

Left congruence. The case of rule (αl) starts similarly, by a case analysis on l. If l is either 〉a or
x, the result is straightforward. The remaining case of 〈a is slightly more involved: we know that
[] −[〈a /〈a ]→T [] :: 〈a, a〉 and that [] −[w1/w2]→T s ∈ Sacc, and we need to find s′ ∈ Sacc such
that [] :: 〈a, a〉 −[w1/w2]→T s′. We prove by induction on paths that such an s′ indeed exists,
and is equal to either s or 〈a, a〉 :: s.

α-Freshness. This is the most subtle case. We start with the following lemma, relating the binding
powers and stacks.

Lemma 3.3. Whenever s −[u/v]→T s′ the following identities hold:

|p1 (s′)|a = (|p1 (s)|a ´ da (u)) + ca (u) |p2 (s′)|a = (|p2 (s)|a ´ da (v)) + ca (v) .

(Where ´ is the truncated subtraction.)

Proof. By induction on paths. ut

For a permutation π and a stack s, we write π •2 s for the stack p1 (s) ⊗ π · p2 (s), obtained by
applying π on the second component of s.

Lemma 3.4. If s −[u/v]→T s′, and if for every name a such that π(a) 6= a we have da (v) +
fa (v) 6 |p2 (s)|a, then there is a path π •2 s −[u/π · v]→T π •2 s′.

Proof. By induction on u, using Lemma 3.3. ut

This allows us to prove the following corollary, which can then be specialised into the case (αα):

Corollary 3.5. If π is a permutation such that every name a ∈ A modified by π (i.e. π(a) 6= a)
is α-fresh for u, then there is an accepting stack s such that [] −[u/π · u]→T s.
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Proof. From the cases of (αε) and (αr), we can build inductively an stack s such that [] −[u/u]→T
s. The premise of Lemma 3.4 is met: if π(a) 6= a, then by assumption a #α u, meaning that
da (u) + fa (u) = 0 = |p2 ([])|a. We apply the lemma and get π •2 [] −[u/π · u]→T π •2 s. Since
π •2 [] = [], we only need to check that π •2 s is accepting, i.e. that p1 (s) = π · p2 (s). This holds
because for every a ∈ p2 (s), we have π(a) = a. Indeed, if this was not the case, by hypothesis we
would have Fa (u) = d0f0c0, and by Lemma 3.3 this means that |p2 (s)|a = (|p2 ([])|a ´ 0)+0 = 0,
meaning a 6∈ p2 (s). ut

Soundness We now endeavour to extract from a path [] −[u/v]→T s ∈ Sacc a derivation of
u =α v. We start by an induction on the length of u.

If u = ε, then v must also be the empty word, and s = []. We may thus conclude by applying
the rule (αε):

ε =α ε
(αε)

For the inductive case, we are in a situation where [] −[u/v]→T s −[l/l′]→T s′ ∈ Sacc, and
the induction hypothesis (I.H.) is:

∀w1, w2 ∈ �?,∀s ∈ Sacc, if |w1| 6 |u| and [] −[w1/w2]→T s, then w1 =α w2.

We make a case distinction on the pair (l, l′).
If (l, l′) = (〈a , 〈b ), then s′ = s :: 〈a, b〉. Since s′ ∈ Sacc, we know that s ∈ Sacc and a = b. We

build a derivation as follows:

[] −[u/v]→T s ∈ Sacc

u =α v
(IH) 〈a ∈ �

u〈a=α v〈a
(αr)

If (l, l′) = (x, y), then s′ = s, and there is a permutation π such that y = π · x and ∀a ∈
supp(x), s |= 〈a, π(a)〉. Since s is accepting we know that whenever s |= 〈a, b〉, we have a = b,
which means that ∀a ∈ supp(x), π(a) = a. Therefore, we have x = π · x = y, so we are in the
same situation as in the previous case:

[] −[u/v]→T s ∈ Sacc

u =α v
(IH) x ∈ �

ux =α vx
(αr)

The remaining case is much more involved. Assume (l, l′) = ( 〉a , 〉b ), then s |= 〈a, b〉 and
s′ = s� 〈a, b〉. Remember that there are two cases for s |= 〈a, b〉: either a = b and a /∈ supp(s),
in which case s′ = s and we may conclude like in the two other cases; or s may be written as
s1 :: 〈a, b〉 :: s2 such that a /∈ p1 (s2) and b /∈ p2 (s2). In this case, s′ = s1 :: s2. Note however that
a may be different from b, in which case although s′ is accepting, s is not. We rely here on the
following result:

∃u1, u2, v1, v2 ∈ �? : u = u1〈a u2 ∧ v = v1〈b v2 ∧ |u1| = |v1| ∧ a � u2 ∧ b � v2. (9)

This is a simple consequence of a stronger auxiliary lemma (together with Lemma 3.3):

Lemma 3.6. If [] −[u/v]→T s1 :: 〈a, b〉 :: s2, then u may be written as u1〈a u2 and v as v1〈b v2,
such that |u1| = |v1|. Furthermore, the following identities hold:

|p1 (s1)|a = ca (u1) |p1 (s2)|a = ca (u2) |p2 (s1)|a = ca (v1) |p2 (s2)|a = ca (v2) .
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Proof. By induction on u, making the inductive case about the last letter. ut

Using (9), we u1, u2, v1, v2. We pick a name c, fresh for both u2 and v2. This implies that c is
α-fresh for u2 and v2. Remark that here we need an unbounded number of atoms. We may now
form the following derivations:

a � u2 c #α u2

〈a u2 〉a =α 〈c (a c) · u2 〉c
(αα)

u1〈a u2 〉a =α u1〈c (a c) · u2 〉c
(αl)

b � v2 c #α v2

〈b v2 〉b =α 〈c (b c) · v2 〉c
(αα)

v1〈b v2 〉b =α v1〈c (b c) · v2 〉c
(αl)

Since we already proved completeness, we can convert these derivations into paths in the trans-
ducer:

[] −[u1〈a u2 〉a /u1〈c (a c) · u2 〉c ]→T t ∈ Sacc [] −[v1〈b v2 〉b /v1〈c (b c) · v2 〉c ]→T t′ ∈ Sacc

Using the tools developed for the transitivity part of our completeness proof, we may combine
these with the path [] −[u1〈a u2 〉a /v1〈b v2 〉b ]→T s′ ∈ Sacc into a single path

[] −[u1〈c (a c) · u2 〉c /v1〈c (b c) · v2 〉c ]→T (t ./ s′) ./ t′.

Unravelling the last step of this path, we can check that we obtain a path:

[] −[u1〈c (a c) · u2/v1〈c (b c) · v2]→T s′′ ∈ Sacc.

We may therefore conclude:

a � u2 c #α u2

〈a u2 〉a =α 〈c (a c) · u2 〉c
(αα)

u1〈a u2 〉a =α u1〈c (a c) · u2 〉c
(αl)

[] −[u1〈c (a c) · u2/v1〈c (b c) · v2]→T s′′ ∈ Sacc

u1〈c (a c) · u2 =α v1〈c (b c) · v2
(I.H.)

u1〈c (a c) · u2 〉c =α v1〈c (b c) · v2 〉c
(αr)

b � v2 c #α v2

〈b v2 〉b =α 〈c (b c) · v2 〉c
(αα)

v1〈b v2 〉b =α v1〈c (b c) · v2 〉c
(αl)

u1〈c (a c) · u2 〉c =α v1〈b v2 〉b
(αt)

u1〈a u2 〉a =α v1〈b v2 〉b
(αt)

3.4 Decision procedure

Thanks to Theorem 3.1, we know that we can obtain an algorithm to decide α-equivalence
if we can implement the transitions of the transducer. The task is as follows: given an input
〈s, l1, l2〉 ∈ S×�×�, we need to check if there exists a transition from s labelled with l1/l2, and
compute the successor stack. We can make a case analysis on the pair 〈l1, l2〉:

– if the letters are of different “types” (e.g. 〈a and 〉b ), reject;
– if the letters are of the shape 〈a , 〈b , return s :: 〈a, b〉;
– if the letters are of the shape 〉a , 〉b , check whether s |= 〈a, b〉:
• if it does, return s� 〈a, b〉;
• otherwise, reject;

– finally, if l1 = x and l2 = y, with x, y ∈ X, we need to check if there exists a permutation π
such that y = π · x and ∀a ∈ supp(x), s |= 〈a, π(a)〉. If π exists, we return s, otherwise we
reject the input.

Checking s |= 〈a, b〉 is straightforward with a linear algorithm, as is computing s� 〈a, b〉. There-
fore, the only missing ingredient is a way to check for the existence of a permutation sending one
variable to another, and compatible with a given stack.
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Algorithm 1: var_perm (s,A)
Input: s ∈ S and A ∈ Pf (A);
Output: Either ⊥ to signify failure or a permutation in SA;
match s :

case [] : return IdA;
case s :: 〈a, b〉 :

match var_perm (s,A \ a) :
case ⊥ : return ⊥;
case π :

if b ∈ π · (A \ a) then return ⊥;
else if a ∈ A then return (π(a) b) ◦ π;
else return π;

The key observation for the algorithm is the following: given a stack s and a name a, there
is at most one b such that s |= 〈a, b〉. This b may be computed in linear-time as image (s, a):

image ([], a) := a image (s :: 〈b, c〉 , a) :=
{
c if a = b
image (s, a) otherwise.

Notice that it is not always the case that s |= 〈a, image (s, a)〉: for instance consider the stack
s = [] :: 〈a, b〉 :: 〈c, b〉; we have image (s, a) = b, but s 6|= 〈a, b〉. However, if s |= 〈a, b〉, then b must
be equal to image (s, a).

If π is a permutation witnessing s −[x/y]→T s, by the compatibility condition for each
a ∈ supp(x) we know that π(a) = image (s, a). Since π · x is uniquely determined by the values
of π on supp(x), and since the compatibility condition depends upon the same values, we may
check the validity of the transition as follows:

1. for each a ∈ supp(x), compute image (s, a), and check if s |= 〈a, image (s, a)〉;
2. pick any permutation πsupp(x)

s such that ∀a ∈ supp(x), π
supp(x)
s (a) = image (s, a);

3. check that y = π
supp(x)
s · x.

The first two steps may be done in one sweep of the stack s using var_perm (−,−), as defined
in Algorithm 1. The effect of this function can be summarised by the following observations:

var_perm (s,A) = ⊥ ⇔ ∃a ∈ A : ∀b, s 6|= 〈a, b〉 (10)
∃π : var_perm (s,A) = π ⇒ ∀a ∈ A, s |= 〈a, π(a)〉 . (11)

From these we deduce that s −[x/y]→T s if and only if var_perm (s, supp(x)) is a permutation
π and y = π ·x. We now use this to formulate Algorithm 2 to decide α-equivalence. This algorithm
uses linear space.

3.5 The bisimulation collapse

In this section we investigate the properties of the transducer T , considered as a labelled transi-
tion system. We show that several ways of comparing states of the system (i.e. stacks) happen to
coincide: simulation, bisimulation, semantic equivalence, semantic containment... In this section,
we call labels pairs of letters, and let α, β range over labels, and traces pairs of words, using σ, τ
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Algorithm 2: Decision procedure for α-equivalence
Input: A pair of words 〈u, v〉;
Output: A boolean corresponding to the property u =α v;
if |u| 6= |v| then return false; /* By (8), u 6=α v. */
s← []; /* Start with the empty stack. */
for i = 1 to |u| do /* Scan the pairs 〈ui, vi〉. */

match ui, vi :
case 〈a , 〈b : s← s :: 〈a, b〉;
case 〉a , 〉b :

if s 6|= 〈a, b〉 then return false;
s← s� 〈a, b〉;

case x, y :
match var_perm (s, supp(x)) :

case ⊥ : return false;
case π :

if y 6= π · x then return false;

otherwise : return false;

/* After the main loop we have ⊥ −[u/v]→T s. */
foreach 〈a, b〉 ∈ s do /* Check if s ∈ Sacc. */

if a 6= b then return false;

return true ; /* Now we have s ∈ Sacc, hence u =α v. */

to denote traces. The semantics of a stack s, written JsK, is the set of traces labelling runs from
s to an accepting stack: JsK := {σ ∈ �? × �? | ∃s′ ∈ Sacc : s −[σ]→T s′} .

The stacks s1 and s2 are said to be similar, written s1 4 s2, if for any transition from s1
there is a transition from s2 with the same label, and the target stacks are similar.

(∀ 〈α, s〉 ∈ (� × �)× S, s1 −[α]→T s⇒ ∃s′, s2 −[α]→T s′ ∧ s 4 s′)⇒ s1 4 s2.

Bisimilarity is defined with an analogous coinductive definition: to show that s1 ∼ s2 we need
to prove that for any label α and any stack s:

1. if s1 −[α]→T s, there is a stack s′ such that s ∼ s′ and s2 −[α]→T s′.
2. if s2 −[α]→T s, there is a stack s′ such that s′ ∼ s and s1 −[α]→T s′.

Some simple observations about the definitions we have so far are listed below:

Lemma 3.7. Bisimilarity is an equivalence relation. Similarity is a preorder. Bisimilarity im-
plies similarity.

We may also characterise bisimilarity in terms of path.

Lemma 3.8. Let s, s′ be a pair of stacks, s ∼ s′ if and only if for any trace σ we have:

(∃t : s −[σ]→T t)⇔ (∃t : s′ −[σ]→T t) .

Proof (Sketch). The proof uses the following fact:

s ∼ s′ and s −[σ]→T t⇒ ∃t′ : s′ −[σ]→T t′ and t ∼ t′. (12)
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This may be shown by induction on the path s −[σ]→T t.
For the left-to-right implication, we may simply apply (12). For the converse direction, we

proceed by coinduction, relying on the fact that −[]→T is deterministic in the sense that if
s −[σ]→T s1 and s −[σ]→T s2 then s1 = s2. ut

We call two stacks statically equivalent, and write s == s′, if they are related by the following
inductive relation: s ∈ Sacc ⇒ [] == s and s′ |= 〈a, b〉 and s == s′� 〈a, b〉 ⇒ s :: 〈a, b〉 == s′.
Note that this last relation is straightforward to decide: it is defined by induction on the first
argument. Before we can show that this relation is indeed an equivalence, we make the following
observation:

s == s′ ⇒ (s |= 〈a, b〉 ⇔ s′ |= 〈a, b〉) . (13)

Lemma 3.9. == is an equivalence relation.

Proof. Reflexivity is straightforward. To prove the relation symmetric, assuming s1 == s2 we first
do an induction on s2. The base case being straightforward, we need to show that if s1 |= 〈a, b〉
and s1 == s2 :: 〈a, b〉, then s1� 〈a, b〉 == s2. This is shown by induction on s1. Transitivity is also
shown by induction on stacks, relying on (13), the fact that the relation is symmetric, and the
fact that � is monotonic with respect to ==. ut

It will also be convenient to associate to each stack s a characteristic trace tr (s), defined
inductively as follows: tr ([]) := (ε, ε) and tr (s :: (a, b)) := ( 〉a tr (s)1 , 〉b tr (s)2) . For instance
tr ([] :: 〈a, b〉 :: 〈c, d〉)1 = 〉c 〉a and tr ([] :: 〈a, b〉 :: 〈c, d〉)2 = 〉d 〉b . We also have that tr (s) ∈ JsK.

Theorem 3.10. For any pair of stacks s1, s2, the following are equivalent: (i) s1 4 s2; (ii)
s1 ∼ s2; (iii) Js1K = Js2K; (iv) Js1K ⊆ Js2K; (v) s1 == s2; (vi) tr (s1) ∈ Js2K.

Proof (Sketch). The strategy to prove this is outlined in Figure 1. The implications labelled
with (0) hold trivially. Those labelled with (1) are proved by induction on s1. (2) is proved by
coinduction on the bisimilarity predicate. (3) is relatively straightforward by induction on paths.
(4) was shown in Lemma 3.7. ut

s1 4 s2

s1 ∼ s2

Js1K = Js2KJs1K ⊆ Js2K

s1 == s2

tr (s1) ∈ Js2K
(0)(0)

(1)
(2)

(3)

(4)(1)

Fig. 1: Diagram of the proofs

3.6 Quantitative measures of memory consumption

In the next section, we will look at languages and provide a classification of their expressive
power. One of the things we will consider is a measure on how much memory words in the
language need (intuitively, think of how many resources are allocated at a certain point in the
program). The following definitions and result over binding monoids and words will be useful.

We define the size of a binding element b ∈ B as |dmfncp| = m + p3. This is well defined
since any element of B has a unique normal form of the shape dmfncp, where m, p ∈ N and
p ∈ {0, 1} [2]. Binding monoids have an interesting boundedness property:
3 Since the size of a Boolean is constant, we do not count n in the size of dmfncp. This simplifies a
number of computations.
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Lemma 3.11. For any number N ∈ N, there is only finitely many elements of the binding
monoid with size less than N , i.e. we have that B6N := {β ∈ B | |β| 6 N} is finite.

The weight of a word u is the sum of the sizes of its binding powers: ‖u‖ :=
∑
a∈A |Fa (u)|.

This sum is finite, since for every name a outside the finite set supp(u) we know that the binding
power of u with respect to a is ε, so |Fa (u)| = 0. The memory of a word u is the maximum
weight of a prefix of u, i.e. m (u) := maxvw=u ‖v‖.

From Lemma 3.3 we deduce that if [] −[u/v]→T s, then |s| 6 ‖u‖. Furthermore, every stack
visited in the intermediate steps has length less than m (u).

4 Languages up-to α-equivalence

In this section we extend the study of the previous section from words to languages over alphabets
with binders. We start by extending the definitions of Section 3.1 to languages (Section 4.1). We
then study regular languages over � and provide a characterisation of two well-behaved subclasses
– memory-finite and binding-finite languages. The former that are those regular languages such
that the memory of any word in the language is bounded by a fixed N (Section 4.2).

In classical formal language theory the hierarchy between languages classes is very clear and
expressed equivalently in terms of their syntactic description (regular expressions, context-free
grammars, etc) or the acceptance power of corresponding finite state machines (finite (non)-
deterministic automata, push-down automata, etc). In the presence of nominal alphabets the
characterisation of various classes of languages is not as straightforward and as it turns out the
hierarchy is much finer. In this section we will present a classification of languages that takes into
account several properties stemming from their nominal nature – e.g. finite support vs bounded
support – and from their binding power. We show that variations on these generate very different
classes of languages and organise those in a hierarchy (Section 5).

4.1 Lifting the binding structure to languages

In this section, a language is simply a subset of �?. Since we study α-equivalence, we will be
interested in languages L that do not distinguish α-equivalent words, in the sense that if u =α v
then u ∈ L if and only if v ∈ L.

The simplest way to obtain such languages is to take any language, and close it by α-
equivalence. Formally, the α-closure of a language L is defined as

Lα := {u ∈ �? | ∃v ∈ L, u =α v} .

This enables us to define α-equivalence of languages: two languages are equivalent if their α-
closures are equal.

We may also lift binding powers, weights and memory to languages, in the following way:

Fa (L) := {Fa (u) | u ∈ L} ‖L‖ := sup
u∈L
‖u‖ m (L) := sup

u∈L
m (u).

Notice that for a regular language L = JeK, m (L) = ‖Jprefix (e)K‖.
We will write M6N

Σ for the language of all words over the finite alphabet Σ with memory
less than N :

M6N
Σ := {u ∈ Σ? | m (u) 6 N} .
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For technical reasons, we will actually need another family of languages, that only bound the
quantity ca (u) for all prefixes u.

C6NΣ :=

{
w ∈ Σ?

∣∣∣∣∣ ∀u ∈ prefix (w) ,
∑
a

ca (u) 6 N

}
.

Notice thatM6N
Σ ⊆ C6NΣ , since ca (u) 6 |Fa (u)|.

4.2 Nominal regular languages

In this section we consider regular languages over �, i.e. languages JeK for some expression
e ∈ Reg 〈�〉. For convenience, we will sometimes identify expressions with their language, writing
for instance Fa (e) instead of Fa (JeK). We lift the support function from � to Reg 〈�〉 in the
canonical way: for letters in � we use the supp(−) function from Section 3.1, the support of 0
and 1 is the empty set, the support of e? is that of e and the support of both e+ f and e · f is
supp(e) ∪ supp(f). This definition corresponds to the pointwise lifting of the support function
on words: indeed if e does not contain 0, we have supp(e) =

⋃
u∈JeK supp(u). Note that supp(e)

is always finite, and supports JeK in the sense that for any permutation π that does not modify
any name inside supp(e), we have π · JeK = JeK.

Characterisation of memory-finite languages We will now characterise those regular lan-
guages that are memory finite, meaning there exists a natural number N such that the memory
of any word in the language is less than N . Towards that end, we prove the following lemmas.

Lemma 4.1. For any two non-empty sets A,B ⊆ B, the set A ·B is finite if and only if both A
and B are finite.

Proof. The right to left implication being obvious, assume A·B is finite, and let us choose α0 ∈ A.
By definition, the set {α0} ·B is contained in A ·B, therefore it must be finite. This means this
set has bounded size, in the sense that there exists a number N ∈ N such that γ ∈ α0 ·B entails
|γ| 6 N . Thus for each β ∈ B we have |α0 · β| 6 N . To conclude, notice that the following
inequalities hold for every pair 〈α, β〉 ∈ B × B:

|α| 6 |α · β|+ |β| |β| 6 |α · β|+ |α|.

Therefore, we get that B ⊆ B6N+|α0| which is finite (see the remark at the beginning of Sec-
tion 3.6), hence B itself must be finite. A symmetric argument shows that A is also finite. ut

Lemma 4.2. Let A ⊆ B, the set A? is finite if and only if A consists of a finite number square
bindings, i.e. of elements of the shape dnfpcn. Furthermore, in this case A? = A ∪ {ε}.

Proof. Since A ⊆ A?, if A? is finite so is A. Consider now the product of α = dkfnck and β =
dk
′
fn
′
ck
′
.

dkfnck · dk
′
fn
′
ck
′
=


dkfnck

′+k−k′ = α k > k′

dk+k
′−kfn

′
ck
′
= β k < k′

dkfmax(n,n′)ck
′ ∈ {α, β} k = k′

This implies that if A consists of a finite number of elements of the shape dkfnck, then A? =
A ∪ {ε}. If on the other hand there exists β = dmfncp ∈ A with m 6= p, we have:

(dmfncp)
k
=

{
dmfncp+k×(p−m) p > m
dm+k×(m−p)fncp p < m

In both cases, the set of powers of β is infinite, thus A? is infinite. ut
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We can now give a characterisation of memory-finite regular languages.

Proposition 4.3 (Memory-finiteness). Let e ∈ Reg 〈�〉. JeK is memory-finite if and only if
for any name a ∈ A the set Fa (JeK) is finite.

Proof. The left-to-right implication is straightforward: if JeK is memory-finite there must be a
bound N ∈ N such that ∀u, v,∈ �?, uv ∈ JeK ⇒ ‖u‖ 6 N . For any u ∈ JeK and a ∈ A, by
definition of the weight of a word we know that |Fa (u)| 6 ‖u‖, hence |Fa (u)| 6 N . Therefore,
Fa (e) is contained in B6N , which is finite.

For the other direction, we proceed by induction on e. If e is a letter or a constant, since its
language is finite the result holds trivially. In the case e = f1 + f2, we have Fa (e) = Fa (f1) ∪
Fa (f2), so if for every a ∈ A Fa (e) is finite then both Fa (f1) and Fa (f2). Using the induction
hypothesis we get that both f1 and f2 are memory finite, and since m (e) = max (m (f1),m (f2))
so is e. If e = f1 · f2 and Fa (e) is finite for any a ∈ A, there are two possibilities:

(i) either JeK is empty, in which case e is trivially memory finite;
(ii) or both Fa (f1) and Fa (f2) are non-empty, then according to Lemma 4.1 and the induction

hypothesis both f1 and f2 are memory finite. Hence e must be memory-finite, since we have:

m (e) = ‖prefix (e)‖ = ‖prefix (f1) ∪ f1 · prefix (f2)‖
= max (m (f1), ‖f1 · prefix (f2)‖)
6 max (m (f1), ‖f1‖+ m (f2)) 6m (f1) + m (f2).

For the last case, consider e = f?. Because of Lemma 4.2 if for every name a ∈ A the set
Fa (e) = Fa (f?) is finite, then the set Fa (f) must be finite, hence by the induction hypothesis
f is memory-finite. We can also check that ‖f?‖ is finite: since for any name a the set Fa (f?)
is finite, there are bounds Na ∈ N such that Fa (f?) ⊆ B6Na , so for any word w ∈ Jf?K the
following holds:

‖w‖ =
∑
a∈A

|Fa (w)| =
∑

a∈supp(f?)

|Fa (w)| 6
∑

a∈supp(f?)

Na.

Hence we have a uniform bound on the weights of words in the language of f?, ensuring that
‖f?‖ is finite. We may now conclude that e is memory finite, since:

m (e) = ‖prefix (f?)‖ = ‖f? · prefix (f)‖ 6 ‖f?‖+ m (f). ut

Remark 4.4. This lemma could be reformulated by saying that Fa (e) is finite if and only if
Fa (prefix (e)) is finite.

In what follows, we show that in fact one can prove linear bounds on the weight and memory
of memory finite languages.

Lemma 4.5. If e is memory finite, then ‖e‖ 6 |e| and m (e) 6 2 × |e|, where |e| is the size of
e, i.e. the number of occurrences of letters in e.

Proof. First, we split the size of the expression as∑
a∈supp(e)

|e|a 6 |e| ,

where |e|a is the number of occurrences of letters 〈a and 〉a in e. To get the bound on the weight
of e, we simply prove by induction on e that if e is memory-finite and β ∈ Fa (e), then |β| 6 |e|a.
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For the other bound, we need a stronger induction hypothesis. What we end up showing
by induction on e is that if e is memory-finite then for any name a, and every dmfkcn ∈
Fa (prefix (e)), we have: m+ n 6 2 |e|a and |m− n| 6 |e|a. This enables us to check that:

m (e) = ‖prefix (e)‖ = sup
u∈Jprefix(e)K

‖u‖ = sup
u∈Jprefix(e)K

∑
a

|Fa (u)| 6
∑
a

sup
u∈Jprefix(e)K

|Fa (u)|

=
∑
a

sup
β∈Fa(prefix(e))

|β|

6
∑
a

2 |e|a = 2 ·
∑
a

|e|a 6 2 |e| .

ut

Characterisation of binding finite languages We first define the function bindings : A→
Reg 〈�〉 → Pf (B), that computes the binding powers Fa (e). We say that e is binding-finite if
Fa (e) is finite for all a ∈ A 4.

bindingsa (0) := ∅ bindingsa (1) := {ε} bindingsa (l) := {Fa (l)}
bindingsa (e+ f) := bindingsa (e) ∪ bindingsa (f)

bindingsa (e · f) := bindingsa (e) · bindingsa (f)

bindingsa (e
?) := {ε} ∪ {β ∈ bindingsa (e) | β is square}

The two main properties of this function are summarised in Lemma 4.6.

Lemma 4.6. Let e ∈ Reg 〈�〉 and a ∈ A, then bindingsa (e) ⊆ Fa (e). If e is binding-finite,
then we also have Fa (e) ⊆ bindingsa (e).

Proof. The first containment is easily checked by an induction on e. The second one is not much
more difficult, essentially relying on Lemmas 4.1 and 4.2. ut

This allows us to define a Boolean predicate isBF (e) to check binding-finiteness on an ex-
pression e:

isBF (0) = isBF (1) = isBF (l) := >
isBF (e+ f) := isBF (e) ∧ isBF (f)

isBF (e · f) := isZero (e) ∨ isZero (f) ∨ (isBF (e) ∧ isBF (f))

isBF (e?) := isBF (e) ∧ (∀a ∈ supp(e),∀β ∈ bindingsa (e) , β is square) .

Lemma 4.7 (Binding-Finiteness). An expression e ∈ Reg 〈�〉 is binding-finite if and only if
isBF (e) = >.

Proof. We proceed by case analysis on isBF (e):

– if isBF (e) = >, we show that for any a ∈ A we have Fa (e) ⊆ bindingsa (e), thus ensuring
that Fa (e) is finite;

– if isBF (e) = ⊥ we prove that there exists a ∈ A such that for any N ∈ N, there is u ∈ JeK
such that |Fa (u)| > N . ut

4 In the next section we will refine this notion further for languages and have a weak and strong variant
of binding-finiteness.
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5 Language Classification

In this section, we compare various natural notions of tractability for languages over �. Some
of those are classic nominal notions, having to do with the support of the language, and others
are new notions, related to binding power and memory, two of which we already characterised in
detail in the previous section. We will completely map the Boolean algebra generated by these
predicates: we prove which containments hold, and provide examples to inhabit every non-empty
boolean combination of these predicates.

It is worth noting that we do not discuss in this paper the automata corresponding to these
classes of languages. In a separate companion paper [1], we present a Kleene theorem for non-
deterministic nominal automata.

5.1 Definitions

We denote by reg the set of languages L such that L = JeKα for some expression e ∈ Reg 〈�〉.
We say that a permutation π ∈ SA fixes a set of atoms A ⊆ A when ∀a ∈ A, π (a) = a.

Finite support We will consider four classes of languages based on their support.

bs : L has bounded support if there exists a finite set A ⊆ A such that⋃
u∈L

supp(u) ⊆ A.

αbs : L has bounded α-support if there exists a finite set A ⊆ A such that⋃
u∈L

suppα(u) ⊆ A.

fs : L is finitely supported if there is a finite set A such that if π fixes A then π ·L = L, meaning:

∀u ∈ �?, π · u ∈ L⇔ u ∈ L.

αfs : L is finitely supported up-to α if there is a finite set A such that if π fixes A then π·Lα = Lα,
meaning:

∀u ∈ �?, π · u ∈ Lα ⇔ u ∈ Lα.

Binding classes We now consider five classes of languages based on properties of their binding
power, memory, and weight.

ubf : L is uniformly binding finite if the set FL is finite, where

FL := {[a 7→ Fa (u)] | u ∈ L} .

mf : L is memory-finite if there is a number N ∈ N such that u ∈ L⇒m (u) 6 N .
bw : L has bounded weight if there is a number N ∈ N such that u ∈ L⇒ ‖u‖ 6 N .
bf’ : L is binding finite in the strong sense if the set FL is finite, where

FL := {Fa (u) | 〈u, a〉 ∈ L× A} .

bf : L is binding finite in the weak sense if for any name a ∈ A, the set Fa (L) is finite.

Next, we first study in detail how all these predicates and classes of languages relate to each
other (Section 5.2) and then provide a long list of concrete examples of languages that show how
strict some of these relations are (Section 5.3).
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5.2 Inclusions

The results of this section, together with what we showed in Section 4.2, are summarised in
Figure 2. The dashed arrows indicate implications that hold in the presence of bf : for instance
the arrow from reg to mf represents on direction of Proposition 4.3, that is reg ∧ bf ⇒mf .

mf ubf reg

bw bs

bf’ αbs fs

bf αfs

Fig. 2: Summary of the inclusions of tractability predicates

We may notice from this picture that for a regular language L := JeKα, there are only two
possibilities: either L is binding finite, in which case it enjoys all of these predicates, or it is not,
in which case it only satisfies bs , fs , αbs , and αfs .

Lemma 5.1. ubf⇒ αbs.

Proof. We show that suppα(L) is finite. First, notice that

suppα(L) =
⋃
u∈L
{a ∈ A | Fa (u) 6= ε} =

⋃
f∈FL

{a ∈ A | f (a) 6= ε} .

For all f ∈ FL the set {a ∈ A | f (a) 6= ε} is finite since there exists u ∈ L such that we have
f = [a 7→ Fa (u)] and so {a ∈ A | f (a) 6= ε} = suppα(u) which is always finite. ut

Lemma 5.2. ubf⇒ bw.

Proof. Let L ∈ ubf , we have:

‖L‖ = sup
u∈L
‖u‖ = sup

u∈L

∑
a∈A

|Fa (u)| = sup
u∈L

∑
a∈suppα(L)

|Fa (u)| = max
f∈FL

∑
a∈suppα(L)

|fu|.

We know FL to be finite, so by Lemma 5.1 suppα(L) is as well, thus ‖L‖ is bounded. ut

Lemma 5.3. bw⇒ bf’.

Proof. Since ‖L‖ = supu∈L ‖u‖ and ‖u‖ =
∑
a∈A |Fa (u)|, we know that |Fa (u)| 6 ‖u‖ 6 ‖L‖.

Therefore, FL ⊆ B6‖L‖ which we know to be finite from Section 3.6. ut

Lemma 5.4. bf’⇒ bf.

Proof. For any a ∈ A, we have Fa (L) ⊆ FL so if the latter is finite, so is the former. ut

Lemma 5.5. mf⇒ bw.

Proof. By definition we have m (L) = ‖prefix (L)‖ = sup {‖u‖ | u ∈ prefix (L)} . Since L ⊆
prefix (L) and sup is monotone, we get m (L) > ‖L‖. Therefore if m (L) is finite so is ‖L‖. ut
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Lemma 5.6. bs⇒ αbs.

Proof. Assume we have a finite set A ⊆ A such that
⋃
u∈L supp(u) ⊆ A. Since for all words u

we have suppα(u) ⊆ supp(u), we get:⋃
u∈L

suppα(u) ⊆
⋃
u∈L

supp(u) ⊆ A. ut

Lemma 5.7. bs⇒ fs.

Proof. Assume we have a finite set A ⊆ A such that
⋃
u∈L supp(u) ⊆ A. If π fixes A, then

for every word in u ∈ L π fixes supp(u) so we have π · u = u. This implies that we have
π · L = {π · u | u ∈ L} = L. ut

Lemma 5.8. αbs⇒ αfs.

Proof. Assume we have a finite set A ⊆ A such that
⋃
u∈L suppα(u) ⊆ A. If π fixes A, then for

every word in u ∈ L, π fixes suppα(u) so we have π · u =α u. This implies that

v ∈ π · Lα ⇔ ∃〈v′, u〉 ∈ �? × L : v = π · v′ ∧ v′ =α u⇔ ∃u ∈ L : π−1 · v =α u

⇔ ∃u ∈ L : v =α π · u
⇔ ∃u ∈ L : v =α u

⇔ v ∈ Lα. ut

Lemma 5.9. fs⇒ αfs.

Proof. Assume we have a finite set A such that if π fixes A then π · L = L, meaning: ∀u ∈
�?, π · u ∈ L⇔ u ∈ L. If π fixes A then π · Lα = (π · L)α = Lα. ut

Lemma 5.10. bf ∧ αfs⇒ bf’.

Proof. Assume that we have a finite A such that for any π ∈ SA, if π fixes A then π · Lα = Lα.
First, consider a, b /∈ A. Clearly (a b) fixes A, so (a b) · Lα = Lα. Therefore we have:

Fa (L) = Fa (Lα) = Fa ((a b) · Lα) = F(a b)−1(a) (L
α)

= Fb (Lα) = Fb (L) .

This proves that the binding power associated with every name outside A are equal, so let us
choose a0 /∈ A, we get that FL is equal to Fa0 (L) ∪

⋃
a∈A Fa (L). Since A is finite and every

Fa (F ) is finite so is FL. ut

Lemma 5.11. bf ∧ αbs⇔ ubf.

Proof. The right-to-left implication is a consequence of Lemmas 5.1, 5.2, 5.3 and 5.4. Assume
suppα(L) is finite and L is bf . According to Lemma 5.10, FL is finite. This means that FL is
composed of function that have values in the finite set FL ∪ {ε}, and such that f (a) 6= ε entails
a ∈ suppα(L). Therefore there are at most (|FL|+ 1)

|suppα(L)| of them. ut



20 Brunet, Petrişan, Silva

5.3 Examples

Definition of the languages We assume we have a family of atoms (αi)i∈N such that if i 6= j
then αi 6= αj . We define the set X := {α2k | k ∈ N}. We now present a list of 24 languages which
we will use to distinguish the above classes.

L1 :=
{
〈αi

i
∣∣ i ∈ N

}
.

L2 :=
{
〈a1 〈a2 〈a3 . . . 〈an

∣∣ n ∈ N ∧ (i 6= j ⇒ ai 6= aj) ∧ (ai ∈ X)
}
.

L3 :=
{
〈a1 〈a2 〈a3 . . . 〈an

∣∣ n ∈ N ∧ (i 6= j ⇒ ai 6= aj) ∧ (ai ∈ A)
}
.

L4 := {〈a | a ∈ X}.
L5 := {〈a | a ∈ A}.
L6 := {〈a n | a ∈ X ∧ n ∈ N} (= L4

?).
L7 := {〈a n | a ∈ A ∧ n ∈ N} (= L5

?).
L8 :=

{
〈α0

n
∣∣ n ∈ N

} (
= 〈α0

?
)
.

L9 := {〈a n 〉a n | a ∈ X ∧ n ∈ N}.
L10 := {〈a n 〉a n | a ∈ A ∧ n ∈ N} (= L9

α = L11
α).

L11 :=
{
〈α0

n 〉α0

n
∣∣ n ∈ N

}
.

L12 := {〈a 〉a | a ∈ X}.
L13 := {〈a 〉a | a ∈ A} (= L12

α).
L14 :=

{
〈a n+1 〉a n

∣∣ a ∈ X ∧ n ∈ N
}
.

L15 := {〈a 〈b 〉b | a ∈ A ∧ b ∈ X} (= L5 · L12).
L16 := {〈a 〈b n 〉b n | a ∈ A ∧ b ∈ X ∧ n ∈ N} (= L5 · L9).
L17 := {〈a 〈b n 〉b n | a ∈ A ∧ b ∈ A ∧ n ∈ N} (= L5 · L10).
L18 :=

{(
〈α0

〉α0

)n ∣∣ n ∈ N
}(

=
(
〈α0

〉α0

)?).
L19 :=

{
〈α0

n〈α1

n
∣∣ n ∈ N

}
.

L20 :=
{(
〈α0

〉α0

)n (〈α1
〉α1

)n ∣∣ n ∈ N
}
.

L21 := L3 ∪ L12. L8 ∪ L13.
L22 := L8 ∪ L13.
L23 := L8 ∪ L9.
L24 := L8 ∪ L16.

Properties of the example languages We now list a series of remarks, allowing us to
precisely classify each of the example languages. These are then used in Table 1 to say which
predicates are satisfied by which languages.

R0 From Sections 5.2 and 4.2 we know the implications from Figure 2.
R1 for L ∈ {L1, L2, L3, L4, L5, L6, L7, L8, L19}, ∀u ∈ L, {u}α = {u}, therefore Lα = L. This

means that for these languages fs = αfs.
R2 for L ∈ {L1, L2, L3, L4, L5, L6, L7, L8, L14, L19}, ∀u ∈ L, suppα(u) = supp(u). This means

that for these languages bs = αbs.
R3 for L ∈ {L3, L5, L7, L10, L13, L17}, ∀π ∈ SA,∀u ∈ L, we have π · u ∈ L, so L ∈ fs.
R4 for L ∈ {L9, L10, L11, L12, L13, L18, L20}, ∀u ∈ L,∀a ∈ A, we have Fa (u) = ε, so L ∈ ubf .
R5 L8 and L18 are regular, L11, L19 and L20 are not.
R6 for L ∈ {L3, L5, L7, L10, L13, L15, L16, L17}, we have that⋃

u∈L supp(u) = A, so L /∈ bs.
R7 for L ∈ {L1, L2, L4, L6, L9, L12, L14}, we have

X ⊆
⋃
u∈L supp(u), so L /∈ bs.

R8 for L ∈ {L8, L11, L18, L19, L20}, we have have if u ∈ L then supp(u) ⊆ {α0, α1}, so L ∈ bs.
R9 for L ∈ {L1, L2, L4, L6, L9, L12, L14, L15, L16, L21, L23, L24}, for any pair 〈a, b〉 ∈ X×(A \X),

there exists a word u ∈ L such that (a b) · u /∈ L. Therefore, for any finite set B, we can find
a, b such that (a b) fixes B but (a b) · L 6= L. This implies that L /∈ fs.
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R10 for C ∈ {ubf ,mf ,bw,bf’,bf ,bs,αbs, fs,αfs, reg}, if two languages L,M belong to the
class C, L ∪M belongs to C.

R11 for C ∈ {ubf ,mf ,bw,bf’,bf ,bs,αbs}, if L ∪M belongs to C, then both L and M belong
to C.

R12 for L ∈ {L4, L5, L12, L13, L15, L18, L20}, for any word u ∈ prefix (L) we have ‖u‖ 6 2, so
L ∈mf .

R13 for L ∈ {L9, L10, L11, L14, L16, L17}, for any word u ∈ L we have ‖u‖ 6 1, so L ∈ bw.
However, for any n ∈ N, there is a word u ∈ prefix (L) such that ‖u‖ = 1, so L /∈mf .

R14 for L ∈ {L6, L7, L8, L19}, there are atoms a ∈ A such that Fa (L) = c?, so L /∈ bf .
R15 for L ∈ {L15, L16, L17}, for a ∈ A, there is u ∈ L such that Fa (u) = c, so L /∈ αbs. However,

for any π ∈ SA, π · u =α u, so π · u ∈ Lα, hence the empty set supports Lα, meaning that
L ∈ αfs.

R16 since L17 ∈ fs and L16
α = L17, L16 ∈ αfs.

R17 since Fαi (L1) =
{
ε, ci

}
and for every a outside the set {αi | i ∈ N} we have Fa (L1) = {ε},

we know that L1 ∈ bf however, FL1 = c?, so L1 /∈ bf’.
R18 for L ∈ {L1, L2}, since in every word each atom appears at most once, FL = {c, ε}, so

L ∈ bf’. However, for any n the word 〈α0
〈α2

. . . 〈α2n
is in L and has weight n + 1, so

L /∈ bw.
R19 For any pair of names 〈a, b〉 ∈ X × (A \X), the word 〈a ∈ L14

α but 〈b 6∈ L14
α. Therefore, for

any finite set of atoms A, pick b ∈ A \ (X ∪A) and a ∈ X \ A. The permutation (a b) fixes
A but does not leave L14

α unchanged: L14 /∈ αfs.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

ubf %R0
%R0

%R0
%R0

%R0
%R0

%R0
%R0

!R4
!R4

!R4
!R4

mf %R0
%R0

%R0
!R12

!R12
%R0

%R0
%R0

%R13
%R13

%R13
!R12

bw %R0
%R18

%R18
!R0

!R0
%R0

%R0
%R0

!R0
!R0

!R13
!R0

bf’ %R17
!R18

!R18
!R0

!R0
%R0

%R0
%R0

!R0
!R0

!R0
!R0

bf !R17
!R0

!R0
!R0

!R0
%R14

%R14
%R14

!R0
!R0

!R0
!R0

bs %R7
%R7

%R6
%R7

%R6
%R7

%R6
!R0

%R7
%R6

!R8
%R7

αbs %R0
%R0

%R2
%R0

%R2
%R0

%R2
!R0

!R0
!R0

!R0
!R0

fs %R9
%R9

!R3
%R9

!R3
%R9

!R3
!R0

%R9
!R3

!R0
%R9

αfs %R1
%R1

!R0
%R1

!R0
%R1

!R0
!R0

!R0
!R0

!R0
!R0

reg %R0
%R0

%R0
%R0

%R0
%R0

%R0
!R5

%R0
%R0

%R0
%R0

L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

ubf !R4
%R0

%R0
%R0

%R0
!R4

%R0
!R4

%R11
%R11

%R11
%R11

mf !R12
%R13

!R12
%R13

%R13
!R0

%R0
!R12

%R11
%R11

%R11
%R11

bw !R0
!R13

!R0
!R13

!R13
!R0

%R0
!R0

%R11
%R11

%R11
%R11

bf’ !R0
!R0

!R0
!R0

!R0
!R0

%R0
!R0

!R10
%R0

%R0
%R11

bf !R0
!R0

!R0
!R0

!R0
!R0

%R14
!R0

!R0
%R0

%R0
%R11

bs %R6
%R7

%R6
%R6

%R6
!R0

!R8
!R8

%R11
%R11

%R11
%R11

αbs !R0
%R2

%R15
%R15

%R15
!R0

!R0
!R0

%R11
!R10

!R10
%R11

fs !R3
%R9

%R9
%R9

!R3
!R0

!R0
!R0

%R9
!R10

%R9
%R9

αfs !R0
%R19

!R15
!R16

!R0
!R0

!R0
!R0

!R10
!R10

!R10
!R10

reg %R0
%R0

%R0
%R0

%R0
!R5

%R5
%R5

%R0
%R0

%R0
%R0

Table 1: Classification of the example languages

This table shows how different each class is and the example languages pinpoint exactly that
the inclusions between the classes are strict. We depict the inclusions together with the languages
that witness their difference in Figure 3.
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reg
bs

αfs

fs

mf

bw
bf'

bf

10

9

11

13

15

12

7

8

1

2

3

4

5

6

14

16

17

18

20

19

21

22

23

24

Fig. 3: Graphical representation of the tractability conditions.

6 Automata for equivalence checking

In this section, we study the following decision problems: given two regular expressions e, f ∈
Reg 〈�〉, is it the case that JeKα = JfKα? Is it the case that JeKα ⊆ JfKα? To do so we will try
and reduce these problems to comparing finite state automata. However, we do not know how
to solve these in general, and only answer those questions when either e or f is binding finite.

Consider a finite state automaton A = 〈Q,ΣA ,−→A , I, F 〉, whereΣA is a finite subset of �. We
write JAK for the regular language accepted by A. We will combine A with T to define a labelled
transition system A α recognising the language JAKα. The states of A α, called configurations in
the following, are pairs 〈q, s〉, where q ∈ Q and s is a stack. We now describe how to update a
configuration by reading a letter:

∃l′ ∈ ΣA : q
l′−→A q′ s −[l′/l]→T s′

〈q, s〉 l−→A α 〈q′, s′〉

The set of initial configurations is Iα := I×{⊥}, the set final configurations is Fα := F×Sacc. The
language of A α is the set of words w ∈ �? such that there is path ci

w−−→A α cf between an initial
configuration ci and a final configuration cf . In this sense, A α may be seen as an automaton
over an infinite alphabet and with an infinite state space: A α =

〈
Q× S,�,−→A α , Iα, Fα

〉
.

Lemma 6.1. The language of A α is the α-closure of JAK.

Proof. From the definition of A α we can show that 〈p, s〉 w−−→A α 〈q, s′〉 if and only if there exists
a word v such that p v−→A q and s −[v/w]→T s′, hence we can conclude using Theorem 3.1.

w ∈ JA αK⇔ ∃〈p, q, s〉 ∈ I × F × Sacc : 〈p,⊥〉 w−−→A α 〈q, s〉

⇔ ∃ 〈p, q, s, v〉 ∈ I × F × Sacc ×Σ?
A : p

v−→A q ∧ ⊥ −[v/w]→T s
⇔ ∃v ∈ Σ?

A : v ∈ JAK ∧ v =α w ⇔ w ∈ JAKα. ut
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Therefore, this transition system may be used to decide the membership problem: given u and
A, is it the case that u ∈ JAKα? We do not develop this further, as this result will be subsumed
by Theorem 6.4.

Although this automaton is always infinite, there are cases where language equivalence/con-
tainment of these automata is decidable. In the following, we will only consider co-accessible
automata, that is to say that for any state p ∈ Q there exists a pair 〈u, q〉 ∈ Σ?

A × F such that
p

u−→A q. This condition is easy to enforce: most algorithms producing automata from regular
expressions either produce co-accessible automata or only need simple modifications to do so.

We now show the main technical lemma of this section:

Lemma 6.2. Given a co-accessible automaton A, an alphabet Σ ∈ Pf (�) and a bound N ∈ N,
there exists a finite state automaton A �Σ,N such that JA �Σ,N K = JAKα ∩ C6NΣ .

Proof. We write A = supp(A) =
⋃
l∈ΣA

supp(l) and B = supp(Σ). Since ΣA and Σ are finite,
both A and B are finite sets. The automaton A �Σ,N is simply built as

A �Σ,N=
〈
Q′, Σ,−→A α , Iα, Fα ∩Q′

〉
,

where Q′ = Q×(A×B)
6N . For simplicity, we will denote A ′ for A �Σ,N in the rest of the proof.

Let us check that this language accepted by this automaton is indeed JAKα ∩ C6NΣ .

1. Assume w ∈ JA ′K. Clearly w ∈ JA αK, since the states and transitions of A ′ are a subset of
those of A α. Since we restricted the alphabet to Σ, we also know that w ∈ Σ?. Therefore,
we only need to check that ∀u ∈ prefix (w),

∑
a ca (u) 6 N . Let u be a prefix of w. Since

w ∈ JA ′K, there is a run in A ′ labelled with w from some initial state 〈q0, []〉. We may extract
the prefix of that run that corresponds to u: 〈q0, []〉

u−→A ′ 〈q, s〉. From the definition of A ′,
we get the following facts: 〈q0, []〉

u−−→A α 〈q, s〉 and |s| 6 N . From the definition of A α, we
know that there exists a word v such that [] −[v/u]→T s. We conclude using Lemma 3.3:∑

a

ca (u) =
∑
a

(|p2 ([])|a ´ da (u)) + ca (u) =
∑
a

|p2 (s)|a = |s| 6 N.

2. Now, suppose w ∈ JAKα ∩ C6NΣ . We know that there is a path 〈q0, []〉
w−−→A α 〈qf , sf 〉 with

q0 ∈ I, qf ∈ F and sf ∈ Sacc. To show that w ∈ JA ′K, we need to be able to reproduce this
run in A ′, so we want to check that every state visited along this path belongs to Q′, i.e.
every stack visited belongs to the set (A×B)

6N . Let us inspect some intermediary state
〈q, s〉: w can be splitted as uv such that 〈q0, []〉

u−−→A α 〈q, s〉 v−→A α 〈qf , sf 〉. By construction

of A α, there must be some word u′ such that q0
u′−→A q and [] −[u′/u]→T s. Since w ∈ C6NΣ

and u is a prefix of w, we have
∑
a ca (u) 6 N . Therefore using the same argument as in the

previous case, we immediately obtain that:

|s| =
∑
a

ca (u) 6 N.

Furthermore, since q0
u′−→A q, we know that u′ ∈ Σ?

A , so supp(u) ⊆ A, meaning that
p1 (s) ⊆ supp(u) ⊆ A. Similarly, since u ∈ C6NΣ , we have p2 (s) ⊆ supp(u) ⊆ B. This
ensures that s ∈ (A×B)

6N . ut
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6.1 Containment

We now focus on checking whether JeKα ⊆ JfKα when either e or f is memory-finite.
We will rely on the following lemma:

Lemma 6.3. Let L,M,K ∈ �? such that L ⊆ K, then: Lα ⊆Mα ⇔ L ⊆Mα ∩K.

Proof. For the left-to-right direction, assume Lα ⊆ Mα. Since L ⊆ Lα, we have L ⊆ Mα. We
conclude by monotonicity of ∩: L = L ∩K ⊆Mα ∩K.

For the converse direction, assume L ⊆ Mα ∩ K. Since Mα ∩ K ⊆ Mα we get L ⊆ Mα,
hence by monotonicity of the α-closure operator we get Lα ⊆ Mαα. We now conclude, since
idempotency of −α ensures that Mαα =Mα. ut

We may now prove the following statement:
Theorem 6.4. If either e or f is memory-finite, then JeKα ⊆ JfKα is decidable.

Proof. We may easily dismiss the case where f is memory-finite but e is not. Indeed in this case
is not possible that JeKα ⊆ JfKα, as this would entail ∀a ∈ A,Fa (e) ⊆ Fa (f). Using isBF (e)
and Lemma 4.7 we can easily detect this situation and provide the correct (negative) answer.

We now assume that e is memory-finite. Let Σ be the alphabet of e, i.e. the set of letters that
appear in e. Thanks to Lemma 4.5, we know that JeK ⊆M62|e|

Σ ⊆ C62|e|
Σ . Using Lemma 6.2, we

build the automaton Af �Σ,2|e|. We may now test the automata Ae and Af �Σ,2|e| for language
inclusion, which will lead to the correct answer thanks to Lemma 6.3:

JeKα ⊆ JfKα ⇔ JeK ⊆ JfKα ∩ C62|e|
Σ (Lemma 6.3)

⇔ JAeK ⊆
q
Af �Σ,2|e|

y
(Lemma 6.2)

ut

6.2 Equality

Since we have shown containment to be decidable, we automatically get a decision procedure
for equality of memory-finite regular languages up-to α-equivalence, by simply proceeding by
double-inclusion. There is however a more direct way, thanks to the following observation:
Lemma 6.5. Let L,M,K ⊆ �? such that L,M ⊆ K. Then Lα = Mα if and only if Lα ∩K =
Mα ∩K.

Proof. The left-to-right implication being trivial, we focus on the converse. Assume Lα ∩K =
Mα∩K. Since L ⊆ Lα and L ⊆ K, we have L ⊆ Lα∩K. By hypothesis this means L ⊆Mα∩K.
Since L ⊆ K, Lemma 6.3 applies, so we get Lα ⊆ Mα. A symmetric argument shows the other
containment. ut

We may now prove the following statement:
Theorem 6.6. If either e or f is memory-finite, then JeKα = JfKα is decidable.

Proof. In this case we may assume that both e and f are memory finite: if this is not the case
(which we can detect using isBF ()) then the equality does not hold.

Let Σ be the alphabet of e ∪ f , i.e. the set of letters that appear in either e or f , and N =
2×max (|e| , |f |). Thanks to Lemma 4.5, we know that JeK, JfK ⊆M6N

Σ ⊆ C6NΣ . We now conclude
using Lemmas 6.5 and 6.2:

JeKα = JfKα ⇔ JeKα ∩ C6NΣ = JfKα ∩ C6NΣ (Lemma 6.3)
⇔ JAe �Σ,N K = JAf �Σ,N K (Lemma 6.2)

ut
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Remark 6.7. In a distinct paper [1] we showed that for any memory-finite expression e the
language JeKα can be recognised by a deterministic nominal automaton. Since equivalence of
these automata is decidable [3,5], this yields another proof of decidability. However since the
reduction from expressions to deterministic automata is slightly involved, we expect that the
approach presented in this section yields more efficient algorithms.

7 Discussion and further work

We have presented bracket algebra, a new algebraic framework to reason about programs with
interleaved scopes. We built the framework modularly: first to reason on words (or program
traces) to then reason on languages (that is, sets of traces). We presented a novel transducer model
to capture equivalence of traces and showed it provides us with a sound and complete method for
deciding equivalence. For languages, we developed a systematic study of their expressive power
classified in terms of different properties related to their nominal characteristics and to their
binding and memory power. The hierarchy depicted in Figure 3 is to the best of our knowledge
the first language hierarchy for nominal languages. We have also provided an automaton model
that enabled us to devise decision procedures for containment – JeKα ⊆ JfKα – and equality –
JeKα = JfKα – of a sub-class of languages, namely memory-finite languages. Interestingly, only
one of the expressions e or f is required to be memory-finite.

The results in sections 3, 4 and 6 have been fully proved in Coq, as part of an ongoing study
of bracket algebra. The library is available on GitHub5, and currently has over 30k lines.

We see several directions for future work. From a theoretical perspective, there are two obvious
directions. First, we would like to investigate the companion hierarchy of automata models to
the hierarchy of languages in Figure 3 and explore whether we can provide further decidability
or hardness results for containment and equivalence. Second, we would like to be able to have a
sound and complete axiomatizations to reason about the various classes of languages – it is not
clear which sub-classes we will be able to axiomatize. From a more applied side, we would like
to explore applications to software verification, by leveraging the ability of our framework to use
any nominal set as alphabet (note we do not require orbit-finiteness, as our expressions can only
mention a finite number of those).
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