

Indécidabilité

Calculabilité et Complexité

Paul Brunet

Indécidabilité Plan

1. Introduction

- 2. Le problème de l'arrêt
- 3. Réductions et autres problèmes indécidables
- 4. Théorème de Rice

Indécidabilité Plan

- 1. Introduction
- 2. Le problème de l'arrêt
- 3. Réductions et autres problèmes indécidables
- 4. Théorème de Rice

Il existe des problèmes impossibles à résoudre avec un ordinateur.

- Il existe des problèmes impossibles à résoudre avec un ordinateur.
- Cela correspond à l'existence de langages indécidables :

définition (Langage Indécidable)

- Il existe des problèmes impossibles à résoudre avec un ordinateur.
- Cela correspond à l'existence de langages indécidables :

définition (Langage Indécidable)

Un langage $L\in \Sigma^\star$ est indécidable si il n'existe pas de machine à décider $\mathcal M$ telle que $\mathcal L(\mathcal M)=L$.

Il est en général difficile de montrer directement qu'un langage est indécidable.

- Il existe des problèmes impossibles à résoudre avec un ordinateur.
- Cela correspond à l'existence de langages indécidables :

définition (Langage Indécidable)

- 📧 Il est en général difficile de montrer directement qu'un langage est indécidable.
- En revanche, on peut faire des réductions :

- Il existe des problèmes impossibles à résoudre avec un ordinateur.
- Cela correspond à l'existence de langages indécidables :

définition (Langage Indécidable)

- ぼ Il est en général difficile de montrer directement qu'un langage est indécidable.
- En revanche, on peut faire des réductions :
 - Je sais que $L_1 \subseteq \Sigma_1^*$ est indécidable.

- Il existe des problèmes impossibles à résoudre avec un ordinateur.
- Cela correspond à l'existence de langages indécidables :

définition (Langage Indécidable)

- Fil est en général difficile de montrer directement qu'un langage est indécidable.
- En revanche, on peut faire des réductions :
 - Je sais que $L_1 \subseteq \Sigma_1^*$ est indécidable.
 - J'ai une fonction calculable $\varphi: \Sigma_1^\star \to \Sigma_2^\star.$

- Il existe des problèmes impossibles à résoudre avec un ordinateur.
- Cela correspond à l'existence de langages indécidables :

définition (Langage Indécidable)

- Fil est en général difficile de montrer directement qu'un langage est indécidable.
- En revanche, on peut faire des réductions :
 - Je sais que $L_1 \subseteq \Sigma_1^*$ est indécidable.
 - J'ai une fonction calculable $\varphi: \Sigma_1^\star \to \Sigma_2^\star.$
 - Je sais que $w \in L_1 \Leftrightarrow \varphi(w) \in L_2$.

- Il existe des problèmes impossibles à résoudre avec un ordinateur.
- Cela correspond à l'existence de langages indécidables :

définition (Langage Indécidable)

- Il est en général difficile de montrer directement qu'un langage est indécidable.
- En revanche, on peut faire des réductions :
 - Je sais que $L_1 \subseteq \Sigma_1^*$ est indécidable.
 - J'ai une fonction calculable $\varphi: \Sigma_1^{\star} \to \Sigma_2^{\star}$.
 - Je sais que $w \in L_1 \Leftrightarrow \varphi(w) \in L_2$.
 - Alors, si L₂ était décidable, L₁ le serait aussi.

- Il existe des problèmes impossibles à résoudre avec un ordinateur.
- Cela correspond à l'existence de langages indécidables :

définition (Langage Indécidable)

- Il est en général difficile de montrer directement qu'un langage est indécidable.
- En revanche, on peut faire des réductions :
 - Je sais que $L_1 \subseteq \Sigma_1^*$ est indécidable.
 - J'ai une fonction calculable $\varphi: \Sigma_1^{\star} \to \Sigma_2^{\star}$.
 - Je sais que $w \in L_1 \Leftrightarrow \varphi(w) \in L_2$.
 - Alors, si L₂ était décidable, L₁ le serait aussi.
 - Comme L₁ ne l'est pas, L₂ ne l'est pas non plus.

- Il existe des problèmes impossibles à résoudre avec un ordinateur.
- Cela correspond à l'existence de langages indécidables :

définition (Langage Indécidable)

- Il est en général difficile de montrer directement qu'un langage est indécidable.
- En revanche, on peut faire des réductions :
 - Je sais que $L_1 \subseteq \Sigma_1^*$ est indécidable.
 - J'ai une fonction calculable $\varphi: \Sigma_1^{\star} \to \Sigma_2^{\star}$.
 - Je sais que $w \in L_1 \Leftrightarrow \varphi(w) \in L_2$.
 - Alors, si L₂ était décidable, L₁ le serait aussi.
 - Comme L₁ ne l'est pas, L₂ ne l'est pas non plus.
- On va donc commencer par trouver un premier langage indécidable.

Indécidabilité Plan

1. Introduction

- 2. Le problème de l'arrêt
 - 3. Réductions et autres problèmes indécidables
 - 4. Théorème de Rice

Langage d'acceptation

La machine universelle que l'on a construit précédemment reconnaît le langage suivant :

$$\mathcal{L}(\mathcal{U}) = L_{\in} := \left\{ \left[\mathcal{M}, w \right]_{code} \; \middle| \; w \in \mathcal{L}(\mathcal{M}) \right\}.$$

Langage d'acceptation

La machine universelle que l'on a construit précédemment reconnaît le langage suivant :

$$\mathcal{L}(\mathcal{U}) = L_{\in} := \left\{ \left[\mathcal{M}, w \right]_{code} \; \middle| \; w \in \mathcal{L}(\mathcal{M}) \right\}.$$

lacktriangle En revanche elle ne décide pas ce langage : si ${\cal M}$ diverge sur l'entrée w, alors ${\cal U}$ ne s'arrête jamais.

Langage d'acceptation

La machine universelle que l'on a construit précédemment reconnaît le langage suivant :

$$\mathcal{L}(\mathcal{U}) = L_{\in} := \left\{ \left[\mathcal{M}, w \right]_{\text{code}} \; \middle| \; w \in \mathcal{L}(\mathcal{M}) \right\}.$$

- lacktriangle En revanche elle ne décide pas ce langage : si ${\cal M}$ diverge sur l'entrée w, alors ${\cal U}$ ne s'arrête jamais.
- Feut-on faire mieux? Autrement dit, le langage L_{\in} est-il décidable?

$$\mathcal{L}(\mathcal{U}) = L_{\in} := \{ [\mathcal{M}, w]_{code} \mid w \in \mathcal{L}(\mathcal{M}) \}.$$

On suppose $L \in \text{décidable}$.

Soit \mathcal{H} une machine décidant L_{\in} .

$$\mathcal{L}(\mathcal{U}) = L_{\in} := \{ [\mathcal{M}, w]_{code} \mid w \in \mathcal{L}(\mathcal{M}) \}.$$

On suppose $L \in décidable$.

Soit \mathcal{H} une machine décidant L_{\in} .

lacksquare On construit la machine $\mathcal Q$:

entrée: $[\mathcal{M}]_{code}$ simuler \mathcal{H} sur $[\mathcal{M}, [\mathcal{M}]_{code}]_{code}$ si \mathcal{H} accepte : rejeter

si \mathcal{H} rejette : accepter

$$\mathcal{L}(\mathcal{U}) = L_{\in} := \{ [\mathcal{M}, w]_{code} \mid w \in \mathcal{L}(\mathcal{M}) \}.$$

On suppose $L \in décidable$.

Soit \mathcal{H} une machine décidant L_{\in} .

lacksquare On construit la machine $\mathcal Q$:

entrée: $[\mathcal{M}]_{code}$ simuler \mathcal{H} sur $[\mathcal{M}, [\mathcal{M}]_{code}]_{code}$ si \mathcal{H} accepte : rejeter si \mathcal{H} rejette : accepter

lacksquare On peut comprendre la machine Q comme suit :

$$\begin{split} [\mathcal{M}]_{code} &\in \mathcal{L}(\mathcal{M}) \Rightarrow \big[\mathcal{M}, [\mathcal{M}]_{code}\big]_{code} \in \mathcal{L}(\mathcal{H}) \Rightarrow [\mathcal{M}]_{code} \notin \mathcal{L}(\mathcal{Q}). \\ [\mathcal{M}]_{code} &\notin \mathcal{L}(\mathcal{M}) \Rightarrow \big[\mathcal{M}, [\mathcal{M}]_{code}\big]_{code} \notin \mathcal{L}(\mathcal{H}) \Rightarrow [\mathcal{M}]_{code} \in \mathcal{L}(\mathcal{Q}). \end{split}$$

$$\mathcal{L}(\mathcal{U}) = L_{\in} := \{ [\mathcal{M}, w]_{code} \mid w \in \mathcal{L}(\mathcal{M}) \}.$$

On suppose $L \in$ décidable.

Soit \mathcal{H} une machine décidant L_{\in} .

lacksquare On construit la machine $\mathcal Q$:

entrée: $[\mathcal{M}]_{code}$ simuler \mathcal{H} sur $[\mathcal{M}, [\mathcal{M}]_{code}]_{code}$ si \mathcal{H} accepte : rejeter si \mathcal{H} rejette : accepter

on peut comprendre la machine Q comme suit :

$$\begin{split} [\mathcal{M}]_{code} &\in \mathcal{L}(\mathcal{M}) \Rightarrow \big[\mathcal{M}, [\mathcal{M}]_{code}\big]_{code} \in \mathcal{L}(\mathcal{H}) \Rightarrow [\mathcal{M}]_{code} \notin \mathcal{L}(\mathcal{Q}). \\ [\mathcal{M}]_{code} &\notin \mathcal{L}(\mathcal{M}) \Rightarrow \big[\mathcal{M}, [\mathcal{M}]_{code}\big]_{code} \notin \mathcal{L}(\mathcal{H}) \Rightarrow [\mathcal{M}]_{code} \in \mathcal{L}(\mathcal{Q}). \end{split}$$

lacksquare Que se passe-t'il si on exécute $\mathcal Q$ sur son propre code?

$$\begin{split} & [\mathcal{Q}]_{code} \in \mathcal{L}(\mathcal{Q}) \Rightarrow [\mathcal{Q}]_{code} \notin \mathcal{L}(\mathcal{Q}). \\ & [\mathcal{Q}]_{code} \notin \mathcal{L}(\mathcal{Q}) \Rightarrow [\mathcal{Q}]_{code} \in \mathcal{L}(\mathcal{Q}). \end{split}$$

$$\mathcal{L}(\mathcal{U}) = L_{\in} := \{ [\mathcal{M}, w]_{code} \mid w \in \mathcal{L}(\mathcal{M}) \}.$$

On suppose $L \in$ décidable.

Soit \mathcal{H} une machine décidant L_{\in} .

lacksquare On construit la machine $\mathcal Q$:

entrée: $[\mathcal{M}]_{code}$ simuler \mathcal{H} sur $[\mathcal{M}, [\mathcal{M}]_{code}]_{code}$ si \mathcal{H} accepte : rejeter si \mathcal{H} rejette : accepter

on peut comprendre la machine Q comme suit :

$$\begin{split} [\mathcal{M}]_{code} &\in \mathcal{L}(\mathcal{M}) \Rightarrow \big[\mathcal{M}, [\mathcal{M}]_{code}\big]_{code} \in \mathcal{L}(\mathcal{H}) \Rightarrow [\mathcal{M}]_{code} \notin \mathcal{L}(\mathcal{Q}). \\ [\mathcal{M}]_{code} &\notin \mathcal{L}(\mathcal{M}) \Rightarrow \big[\mathcal{M}, [\mathcal{M}]_{code}\big]_{code} \notin \mathcal{L}(\mathcal{H}) \Rightarrow [\mathcal{M}]_{code} \in \mathcal{L}(\mathcal{Q}). \end{split}$$

lacksquare Que se passe-t'il si on exécute $\mathcal Q$ sur son propre code?

$$\begin{aligned} & [\mathcal{Q}]_{code} \in \mathcal{L}(\mathcal{Q}) \Rightarrow [\mathcal{Q}]_{code} \notin \mathcal{L}(\mathcal{Q}). \\ & [\mathcal{Q}]_{code} \notin \mathcal{L}(\mathcal{Q}) \Rightarrow [\mathcal{Q}]_{code} \in \mathcal{L}(\mathcal{Q}). \end{aligned}$$

C'est une contradiction!

$$\mathcal{L}(\mathcal{U}) = L_{\in} := \{ [\mathcal{M}, w]_{code} \mid w \in \mathcal{L}(\mathcal{M}) \}.$$

On suppose $L \in$ décidable.

Soit \mathcal{H} une machine décidant L_{\in} .

lacksquare On construit la machine $\mathcal Q$:

entrée: $[\mathcal{M}]_{code}$ simuler \mathcal{H} sur $[\mathcal{M}, [\mathcal{M}]_{code}]_{code}$ si \mathcal{H} accepte : rejeter si \mathcal{H} rejette : accepter

lacksquare On peut comprendre la machine $\mathcal Q$ comme suit :

$$\begin{split} [\mathcal{M}]_{code} &\in \mathcal{L}(\mathcal{M}) \Rightarrow \big[\mathcal{M}, [\mathcal{M}]_{code}\big]_{code} \in \mathcal{L}(\mathcal{H}) \Rightarrow [\mathcal{M}]_{code} \notin \mathcal{L}(\mathcal{Q}). \\ [\mathcal{M}]_{code} &\notin \mathcal{L}(\mathcal{M}) \Rightarrow \big[\mathcal{M}, [\mathcal{M}]_{code}\big]_{code} \notin \mathcal{L}(\mathcal{H}) \Rightarrow [\mathcal{M}]_{code} \in \mathcal{L}(\mathcal{Q}). \end{split}$$

lacksquare Que se passe-t'il si on exécute $\mathcal Q$ sur son propre code?

$$\begin{split} & [\mathcal{Q}]_{code} \in \mathcal{L}(\mathcal{Q}) \Rightarrow [\mathcal{Q}]_{code} \notin \mathcal{L}(\mathcal{Q}). \\ & [\mathcal{Q}]_{code} \notin \mathcal{L}(\mathcal{Q}) \Rightarrow [\mathcal{Q}]_{code} \in \mathcal{L}(\mathcal{Q}). \end{split}$$

C'est une contradiction!

 \mathbb{F} Donc L_{\in} est indécidable.

Indécidabilité Plan

1. Introduction

2. Le problème de l'arrêt

- 3. Réductions et autres problèmes indécidables
- 4. Théorème de Rice

Réduction

Soients $\mathscr{Q}=\langle \emph{I},\emph{P}\rangle$ et $\mathscr{Q}'=\langle \emph{I}',\emph{P}'\rangle$ deux problèmes, avec $\varphi:\emph{I}\to\Sigma^\star$ et $\varphi':\emph{I}'\to\Sigma'^\star$ leurs codages.

définition (Réduction)

Une réduction de \mathcal{P} à \mathcal{P}' est une fonction calculable ρ de Σ^* vers Σ'^* telle que :

$$\forall i \in I, \exists i' \in I' : \rho(\varphi(i)) = \varphi'(i')$$

$$\forall i \in I, i \in P \Leftrightarrow \exists i' \in P' : \rho(\varphi(i)) = \varphi'(i').$$

Si une telle réduction existe, on dit que \mathcal{P} se réduit à \mathcal{P}' , et on écrit $\mathcal{P} \to \mathcal{P}'$.

Utiliser les réductions

théorème

Si $\mathcal{P} \to \mathcal{P}'$, alors :

- 1) Si \mathcal{P}' est reconnaissable alors \mathcal{P} est reconnaissable.
- 2) Si \mathcal{P}' est décidable alors \mathcal{P} est décidable.

Utiliser les réductions

théorème

Si $\mathcal{P} \to \mathcal{P}'$, alors :

- 1) Si \mathcal{P}' est reconnaissable alors \mathcal{P} est reconnaissable.
- 2) Si \mathcal{P}' est décidable alors \mathcal{P} est décidable.

corollaire

Si $\mathcal{P} \to \mathcal{P}'$, alors :

- 1) Si $\mathcal P$ n'est pas reconnaissable alors $\mathcal P'$ ne l'est pas non plus.
- 2) Si ${\it P}$ est indécidable alors ${\it P}'$ est également indécidable.

Preuve (hypothèses)

Supposons que $\mathcal{P}\to\mathcal{P}'$ avec \mathcal{P}' est reconnaissable, on veut montrer que \mathcal{P} est reconnaissable.

Calculabilité et Complexité : Indécidabilité

Preuve (hypothèses)

Supposons que $\mathcal{P}\to\mathcal{P}'$ avec \mathcal{P}' est reconnaissable, on veut montrer que \mathcal{P} est reconnaissable.

Comme $\mathcal{P} \to \mathcal{P}'$, on a ρ telle que :

$$\forall i \in I, \exists i' \in I' : \rho(\varphi(i)) = \varphi'(i')$$

$$\forall i \in I, i \in P \Leftrightarrow \exists i' \in P' : \rho(\varphi(i)) = \varphi'(i').$$

Comme ho est calculable on a $\mathcal{M}_{
ho}$ telle que :

$$\forall w \in \Sigma^{\star}, \ \forall u, v \in \Sigma'^{\star}, \ (\rho(w) = u \cdot v) \Leftrightarrow \left(\exists q \in F: \ q_0 \ w \to_{\mathcal{M}_{\rho}}^{*} u \ q \ v\right).$$

Comme \mathscr{Q}' est reconnaissable on a $\mathcal{M}_{\mathscr{Q}'}$ telle que :

$$\forall i \in I', \ i \in P' \Leftrightarrow \left(\exists u, v, \exists q \in F: \ q_0 \varphi(i) \to^*_{\mathcal{M}_{p'}} u \ q \ v\right).$$

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

 $\operatorname{\mathbb{E}}$ Ensuite, exécuter $\mathcal{M}_{\operatorname{P}'}$ sur cette nouvelle entrée.

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

 $\operatorname{\mathbb{F}}$ Ensuite, exécuter $\mathcal{M}_{\operatorname{P}'}$ sur cette nouvelle entrée.

 $\operatorname{\mathscr{E}}$ Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{p'}$.

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

 $\operatorname{\mathbb{F}}$ Ensuite, exécuter $\mathcal{M}_{\operatorname{P}'}$ sur cette nouvelle entrée.

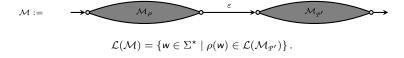
 \mathbb{F} Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\varphi'}$.

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

Ensuite, exécuter $\mathcal{M}_{\mathscr{P}'}$ sur cette nouvelle entrée.

 $\operatorname{\mathbb{Z}}$ Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\varrho'}$.

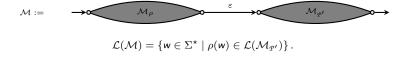


On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

Ensuite, exécuter $\mathcal{M}_{\mathscr{P}'}$ sur cette nouvelle entrée.

 \mathbb{F} Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\varrho'}$.



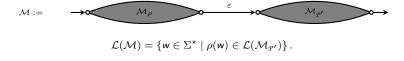
 $i \in P$

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

lacksquare Ensuite, exécuter $\mathcal{M}_{\mathscr{P}'}$ sur cette nouvelle entrée.

 $\operatorname{\mathbb{Z}}$ Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\varrho'}$.

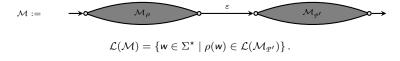


$$\mathbf{i} \in \mathbf{P} \Leftrightarrow \exists \mathbf{i}' \in \mathbf{I}' : \ \mathbf{i}' \in \mathbf{P}' \ \mathbf{et} \ \rho(\varphi(\mathbf{i})) = \varphi'(\mathbf{i}')$$

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

 $\operatorname{\mathbb{Z}}$ Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\varrho'}$.



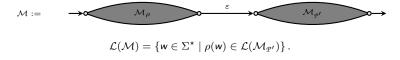
$$\begin{split} \textbf{\textit{i}} \in \textbf{\textit{P}} \Leftrightarrow \exists \textbf{\textit{i}}' \in \textbf{\textit{I}}': \ \textbf{\textit{i}}' \in \textbf{\textit{P}}' \ \text{et} \ \rho(\varphi(\textbf{\textit{i}})) = \varphi'(\textbf{\textit{i}}') \\ \Leftrightarrow \exists \textbf{\textit{i}}' \in \textbf{\textit{I}}': \ \varphi'(\textbf{\textit{i}}') \in \mathcal{L}(\mathcal{M}_{\mathscr{P}'}) \ \text{et} \ \rho(\varphi(\textbf{\textit{i}})) = \varphi'(\textbf{\textit{i}}') \end{split}$$

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

lacksquare Ensuite, exécuter $\mathcal{M}_{\mathscr{L}'}$ sur cette nouvelle entrée.

E Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\varrho\varrho'}$.



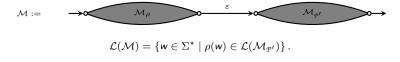
$$\begin{split} i \in P \Leftrightarrow \exists i' \in I' : \ i' \in P' \ \text{et} \ \rho(\varphi(i)) &= \varphi'(i') \\ \Leftrightarrow \exists i' \in I' : \ \varphi'(i') \in \mathcal{L}(\mathcal{M}_{\mathcal{I}'}) \ \text{et} \ \rho(\varphi(i)) &= \varphi'(i') \\ \Leftrightarrow \exists i' \in I' : \ \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{I}'}) \ \text{et} \ \rho(\varphi(i)) &= \varphi'(i') \end{split}$$

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

raket Ensuite, exécuter \mathcal{M}_{arPsi} sur cette nouvelle entrée.

E Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\varrho\varrho'}$.



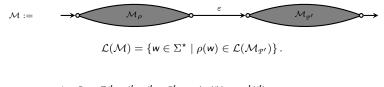
$$\begin{split} i \in P &\Leftrightarrow \exists i' \in I' : \ i' \in P' \ \text{et} \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \exists i' \in I' : \ \varphi'(i') \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \ \text{et} \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \exists i' \in I' : \ \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \ \text{et} \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \ \text{et} \ \exists i' \in I' : \ \rho(\varphi(i)) = \varphi'(i') \end{split}$$

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

Ensuite, exécuter $\mathcal{M}_{\mathscr{P}'}$ sur cette nouvelle entrée.

 \mathbb{E} Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\omega'}$.



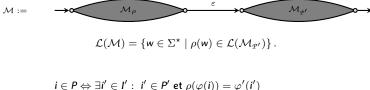
$$\begin{split} i \in P &\Leftrightarrow \exists i' \in I' : \ i' \in P' \ \text{et} \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \exists i' \in I' : \ \varphi'(i') \in \mathcal{L}(\mathcal{M}_{\mathcal{I}'}) \ \text{et} \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \exists i' \in I' : \ \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{I}'}) \ \text{et} \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{I}'}) \ \text{et} \ \exists i' \in I' : \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{I}'}) \end{split}$$

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

raket Ensuite, exécuter \mathcal{M}_{arPsi} sur cette nouvelle entrée.

 \mathbb{E} Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\omega'}$.



$$\Leftrightarrow \exists i' \in I' : \varphi'(i') \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \text{ et } \rho(\varphi(i)) = \varphi'(i')$$

$$\Leftrightarrow \exists i' \in I' : \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \text{ et } \rho(\varphi(i)) = \varphi'(i')$$

$$\Leftrightarrow \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \text{ et } \exists i' \in I' : \rho(\varphi(i)) = \varphi'(i')$$

$$\Leftrightarrow \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'})$$

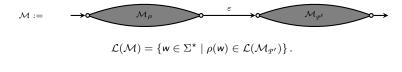
$$\Leftrightarrow \varphi(i) \in \mathcal{L}(\mathcal{M}).$$

On construit une machine ${\mathcal M}$ pour reconnaître ${\mathcal P}$ qui procédera comme suit :

Sur l'entrée w, exécuter \mathcal{M}_{ρ} , pour obtenir $\rho(w)$ sur le ruban.

raket Ensuite, exécuter \mathcal{M}_{arPsi} sur cette nouvelle entrée.

 \mathbb{E} Les états acceptants de \mathcal{M} sont ceux de $\mathcal{M}_{\omega'}$.



$$\begin{split} i \in P &\Leftrightarrow \exists i' \in I' : \ i' \in P' \ \text{et} \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \exists i' \in I' : \ \varphi'(i') \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \ \text{et} \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \exists i' \in I' : \ \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \ \text{et} \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \ \text{et} \ \exists i' \in I' : \ \rho(\varphi(i)) = \varphi'(i') \\ &\Leftrightarrow \rho(\varphi(i)) \in \mathcal{L}(\mathcal{M}_{\mathcal{P}'}) \\ &\Leftrightarrow \varphi(i) \in \mathcal{L}(\mathcal{M}). \end{split}$$

Donc φ est reconnaissable.

Problèmes Indécidables Exercice

Montrer que les problèmes suivants sont indécidables :

- 1) Arrêt sur le mot vide : $\{\mathcal{M} \mid \varepsilon \in \mathcal{L}(\mathcal{M})\}$.
- 2) Vacuité du langage : $\{\mathcal{M} \mid \mathcal{L}(\mathcal{M}) = \emptyset\}$.
- 3) Universalité : $\{\mathcal{M} \mid \mathcal{L}(\mathcal{M}) = \Sigma^{\star}\}.$
- 4) Équivalence : $\{\langle \mathcal{M}, \mathcal{M}' \rangle \mid \mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}')\}.$

Indécidabilité Plan

1. Introduction

- 2. Le problème de l'arrêt
- 3. Réductions et autres problèmes indécidables

4. Théorème de Rice

Énoncé du théorème

théorème (Henry Gordon Rice, 1953)

Toute propriété non-triviale des langages des machines de Turing est indécidable.

Calculabilité et Complexité : Indécidabilité

Énoncé du théorème

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

théorème (Henry Gordon P/ce, 1953)

Toute propriété non-triviale des langages des machines de Turing est indécidable.

Énoncé du théorème

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

théorème (Henry Gordon P ce, 1953)

Toute propriété non-triviale des langages des machines de Turing est indécidable.

Une propriété des langages de machine de Turing est un ensemble P de machines de Turing telle que si deux machines reconnaissent le même langage, soit toutes les deux sont dans P, soit aucune des deux n'appartient à P.

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $\mathcal{P} = \langle I, P \rangle$ un problème.

Soit P = I, c'est à dire que toutes les instances sont positives :

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $\mathcal{P} = \langle I, P \rangle$ un problème.

Soit P = I, c'est à dire que toutes les instances sont positives :

- donc il n'existe pas d'instance négative,

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $\mathcal{P} = \langle I, P \rangle$ un problème.

Soit P = I, c'est à dire que toutes les instances sont positives :

- donc il n'existe pas d'instance négative,
- donc ₽ est triviale.

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $\mathcal{P} = \langle I, P \rangle$ un problème.

- $\begin{cases} \begin{cases} \begin{cases}$
 - donc il n'existe pas d'instance négative,
 - donc ₽ est triviale.
- Soit $P = \emptyset$, c'est à dire que toutes les instances sont négatives :

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $\mathcal{P} = \langle I, P \rangle$ un problème.

- $\begin{cases} \begin{cases} \begin{cases}$
 - donc il n'existe pas d'instance négative,
 - donc ₽ est triviale.
- Soit $P = \emptyset$, c'est à dire que toutes les instances sont négatives :
 - donc il n'existe pas d'instance positive,

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $P = \langle I, P \rangle$ un problème.

- Soit P = I, c'est à dire que toutes les instances sont positives :
 - donc il n'existe pas d'instance négative,
 - donc ₽ est triviale.
- Soit $P = \emptyset$, c'est à dire que toutes les instances sont négatives :
 - donc il n'existe pas d'instance positive,
 - donc ₽ est triviale.

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $P = \langle I, P \rangle$ un problème.

- Soit P = I, c'est à dire que toutes les instances sont positives :
 - donc il n'existe pas d'instance négative,
 - donc ₽ est triviale.
- Soit $P = \emptyset$, c'est à dire que toutes les instances sont négatives :
 - donc il n'existe pas d'instance positive,
 - donc ₽ est triviale.
- Soit $P \notin \{I,\emptyset\}$ et donc :

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $\mathcal{P} = \langle \mathbf{I}, \mathbf{P} \rangle$ un problème.

- Foit P = I, c'est à dire que toutes les instances sont positives :
 - donc il n'existe pas d'instance négative,
 - donc ₽ est triviale.
- lacksquare Soit $P=\emptyset$, c'est à dire que toutes les instances sont négatives :
 - donc il n'existe pas d'instance positive,
 - donc ₽ est triviale.
- Soit $P \notin \{I, \emptyset\}$ et donc :
 - $I \setminus P \neq \emptyset$ (sinon, comme $P \subseteq I$, on aurait P = I), et donc $\exists i_- \in I \setminus P$, autrement dit il existe une instance négative i_- ;

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $P = \langle I, P \rangle$ un problème.

- Soit P = I, c'est à dire que toutes les instances sont positives :
 - donc il n'existe pas d'instance négative,
 - donc ₽ est triviale.
- \mathcal{F} Soit $P = \emptyset$, c'est à dire que toutes les instances sont négatives :
 - donc il n'existe pas d'instance positive,
 - donc ₽ est triviale.
- Soit $P \notin \{I, \emptyset\}$ et donc :
 - $I \setminus P \neq \emptyset$ (sinon, comme $P \subseteq I$, on aurait P = I), et donc $\exists i_- \in I \setminus P$, autrement dit il existe une instance négative i_- ;
 - $P \neq \emptyset$, donc $\exists i_+ \in P$, autrement dit il existe une instance positive i_+ ;

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $\mathcal{P} = \langle \mathbf{I}, \mathbf{P} \rangle$ un problème.

- Soit P = I, c'est à dire que toutes les instances sont positives :
 - donc il n'existe pas d'instance négative,
 - donc ₽ est triviale.
- \mathcal{F} Soit $P = \emptyset$, c'est à dire que toutes les instances sont négatives :
 - donc il n'existe pas d'instance positive,
 - donc ₽ est triviale.
- Soit $P \notin \{I, \emptyset\}$ et donc :
 - $I \setminus P \neq \emptyset$ (sinon, comme $P \subseteq I$, on aurait P = I), et donc $\exists i \in I \setminus P$, autrement dit il existe une instance négative i;
 - $P \neq \emptyset$, donc $\exists i_+ \in P$, autrement dit il existe une instance positive i_+ ;
 - donc ₽ est non-triviale.

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $\mathcal{P} = \langle \mathbf{I}, \mathbf{P} \rangle$ un problème.

- Soit P = I, c'est à dire que toutes les instances sont positives :
 - donc il n'existe pas d'instance négative,
 - donc ₽ est triviale.
- \mathcal{F} Soit $P = \emptyset$, c'est à dire que toutes les instances sont négatives :
 - donc il n'existe pas d'instance positive,
 - donc ₽ est triviale.
- Soit $P \notin \{I, \emptyset\}$ et donc :
 - $I \setminus P \neq \emptyset$ (sinon, comme $P \subseteq I$, on aurait P = I), et donc $\exists i \in I \setminus P$, autrement dit il existe une instance négative i.
 - $P \neq \emptyset$, donc $\exists i_+ \in P$, autrement dit il existe une instance positive i_+ ;
 - donc P est non-triviale.
- Intuitivement, une propriété triviale est une question dont la réponse ne dépend pas de l'objet sur lequel elle porte.

définition

Une propriété est non-triviale si il existe au moins une instance positive et une instance négative.

Autrement dit, soit $P = \langle I, P \rangle$ un problème.

- Soit P = I, c'est à dire que toutes les instances sont positives :
 - donc il n'existe pas d'instance négative,
 - donc ₽ est triviale.
- $raket{\mathbb{F}}$ Soit $P=\emptyset$, c'est à dire que toutes les instances sont négatives :
 - donc il n'existe pas d'instance positive,
 - donc ₽ est triviale.
- Soit $P \notin \{I,\emptyset\}$ et donc :
 - $I \setminus P \neq \emptyset$ (sinon, comme $P \subseteq I$, on aurait P = I), et donc $\exists i \in I \setminus P$, autrement dit il existe une instance négative i.
 - $P \neq \emptyset$, donc $\exists i_+ \in P$, autrement dit il existe une instance positive i_+ ;
 - donc ₽ est non-triviale.
- Intuitivement, une propriété triviale est une question dont la réponse ne dépend pas de l'objet sur lequel elle porte.
- Une telle propriété est donc décidable : si on nous donne une instance, on peut donner la réponse immédiatement, sans même examiner l'instance donnée en entrée!

Exemples de trivialité

Les problèmes suivants sont triviaux.

 \bowtie $\langle \mathbb{N}, \{n \in \mathbb{N} \mid 7 \text{ est pair} \} \rangle$.

Propriété des langages

définition

Une propriété des langages de machine de Turing est un ensemble P de machines de Turing telle que si deux machines reconnaissent le même langage, soit toutes les deux sont dans P, soit aucune des deux n'appartient à P.

Formellement, un problème $\mathcal{P} = \langle \mathit{I}, \mathit{P} \rangle$ est dit « de langage des machines de Turing » :

- 1) si $\emph{I} = \{\mathcal{M} \mid \mathcal{M} \text{ machines de Turing sur l'alphabet } \Sigma\}$, pour un alphabet Σ ,
- 2) et si P vérifie la propriété suivante :

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \ \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow \left(\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P\right).$$

Cette propriété est équivalente aux énoncés suivants :

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \ \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \text{ et } \mathcal{M}_1 \notin P \Rightarrow \mathcal{M}_2 \notin P.$$

exercice

Montrer que les quatres propriétés ci-dessus sont équivalentes.

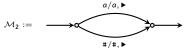
Exemples Machines avec un nombre pair d'états

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \ \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow (\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P) \,.$$

 $\Sigma = \{a\}$ et $\textit{P} = \{\mathcal{M} \mid \mathcal{M} \text{ a un nombre pair d'états, i.e. } |\textit{Q}| \text{ est pair}\}.$

soient les machines suivantes :

$$\mathcal{M}_1 := \longrightarrow 0 \longrightarrow$$



Exemples Machines avec un nombre pair d'états

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \ \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow (\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P) \,.$$

 $\Sigma = \{a\}$ et $\textit{P} = \{\mathcal{M} \mid \mathcal{M} \text{ a un nombre pair d'états, i.e. } |\textit{Q}| \text{ est pair}\}.$

soient les machines suivantes :

$$\mathcal{M}_1 := \longrightarrow 0 \longrightarrow \mathcal{M}_2 := \longrightarrow 0 \longrightarrow \#/\#, \blacktriangleright$$

Exemples Machines avec un nombre pair d'états

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \ \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow (\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P) \ .$$

 $\Sigma = \{a\}$ et $P = \{M \mid M \text{ a un nombre pair d'états, i.e. } |Q| \text{ est pair}\}.$

soient les machines suivantes :

$$\mathcal{M}_1 := \longrightarrow 0 \longrightarrow \mathcal{M}_2 := \longrightarrow 0 \longrightarrow \mathbb{Z}$$

1)
$$\mathcal{L}(\mathcal{M}_1) = \{a\}^*$$
 et $\mathcal{L}(\mathcal{M}_2) = \{a\}^*$;

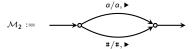
Exemples

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \ \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow (\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P) \,.$$

 $\Sigma = \{a\} \text{ et } \textit{P} = \{\mathcal{M} \mid \mathcal{M} \text{ a un nombre pair d'états, i.e. } |\textit{Q}| \text{ est pair}\}.$

soient les machines suivantes :

$$\mathcal{M}_1:= \quad {\longrightarrow} {} {} {} {\longrightarrow}$$



- 1) $\mathcal{L}(\mathcal{M}_1) = \{a\}^* \text{ et } \mathcal{L}(\mathcal{M}_2) = \{a\}^*;$
- 2) $|Q_1| = |\{0\}| = 1$ et $|Q_2| = |\{q_0, q_1\}| = 2$;

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \ \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow (\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P) \,.$$

 $\Sigma = \{a\}$ et $\textit{P} = \{\mathcal{M} \mid \mathcal{M} \text{ a un nombre pair d'états, i.e. } |\textit{Q}| \text{ est pair}\}.$

soient les machines suivantes :

$$\mathcal{M}_1 := \longrightarrow 0 \longrightarrow \mathcal{M}_2 := \longrightarrow 0 \longrightarrow \emptyset$$

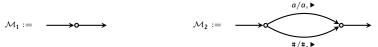
- 1) $\mathcal{L}(\mathcal{M}_1) = \{a\}^* \text{ et } \mathcal{L}(\mathcal{M}_2) = \{a\}^*;$
- 2) $|Q_1| = |\{0\}| = 1$ et $|Q_2| = |\{q_0, q_1\}| = 2$;
- 3) c'est à dire que qu'on a $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$, $\mathcal{M}_1 \notin P$ et $\mathcal{M}_2 \in P$.

Machines avec un nombre pair d'états

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \; \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow (\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P) \,.$$

 $\Sigma = \{a\}$ et $P = \{\mathcal{M} \mid \mathcal{M} \text{ a un nombre pair d'états, i.e. } |Q| \text{ est pair}\}.$

soient les machines suivantes :



- On remarque que :
 - 1) $\mathcal{L}(\mathcal{M}_1) = \{a\}^* \text{ et } \mathcal{L}(\mathcal{M}_2) = \{a\}^*;$
 - 2) $|Q_1| = |\{0\}| = 1$ et $|Q_2| = |\{q_0, q_1\}| = 2$;
 - 3) c'est à dire que qu'on a $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$, $\mathcal{M}_1 \notin P$ et $\mathcal{M}_2 \in P$.

Ela signifie que P n'est pas une propriété des langages, autrement dit que le problème $\langle \{\mathcal{M} \mid \mathcal{M} \text{ machine sur } \{a\}\}, P \rangle$ n'est pas un problème de langage.

ExemplesMachines acceptant un mot de longueur paire

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \ \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow (\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P) \,.$$

$$\Sigma = \{a\}$$
 et $P = \{\mathcal{M} \mid \exists n \in \mathbb{N} : a^{2n} \text{ est accepté par } \mathcal{M}\}.$

The on observe l'équivalence suivante :

$$\label{eq:main_problem} \begin{split} \mathcal{M} \in \textit{P} \Leftrightarrow \exists \textit{n} \in \mathbb{N}: \; \textit{a}^{2\textit{n}} \; \text{est accept\'e par } \mathcal{M} \\ \Leftrightarrow \mathcal{L}(\mathcal{M}) \cap \left\{\textit{a}^{2\textit{n}} \; \middle|\; \textit{n} \in \mathbb{N}\right\} \neq \emptyset \end{split}$$

Machines acceptant un mot de longueur paire

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \ \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow (\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P) \,.$$

$$\Sigma = \{a\}$$
 et $P = \{\mathcal{M} \mid \exists n \in \mathbb{N} : a^{2n} \text{ est accept\'e par } \mathcal{M}\}.$

On observe l'équivalence suivante :

$$\mathcal{M} \in P \Leftrightarrow \exists n \in \mathbb{N} : \ a^{2n} \text{ est accept\'e par } \mathcal{M}$$

$$\Leftrightarrow \mathcal{L}(\mathcal{M}) \cap \left\{ a^{2n} \mid n \in \mathbb{N} \right\} \neq \emptyset$$

$$\begin{split} \mathcal{M}_1 \in P \Leftrightarrow \mathcal{L}(\mathcal{M}_1) \cap \left\{ a^{2n} \bigm| n \in \mathbb{N} \right\} \neq \emptyset \\ \Leftrightarrow \mathcal{L}(\mathcal{M}_2) \cap \left\{ a^{2n} \bigm| n \in \mathbb{N} \right\} \neq \emptyset \Leftrightarrow \mathcal{M}_2 \in P. \end{split}$$

$$\forall \mathcal{M}_1, \mathcal{M}_2 \in I, \; \mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2) \Rightarrow (\mathcal{M}_1 \in P \Leftrightarrow \mathcal{M}_2 \in P) \,.$$

$$\Sigma = \{a\} \text{ et } \textit{P} = \big\{\mathcal{M} \bigm| \exists \textit{n} \in \mathbb{N}: \textit{ } \textit{a}^{2\textit{n}} \text{ est accept\'e par } \mathcal{M}\big\}.$$

On observe l'équivalence suivante :

$$\label{eq:definition} \begin{split} \mathcal{M} \in \textit{P} &\Leftrightarrow \exists n \in \mathbb{N}: \ \textit{a}^{2n} \ \text{est accept\'e par } \mathcal{M} \\ &\Leftrightarrow \mathcal{L}(\mathcal{M}) \cap \left\{\textit{a}^{2n} \ \middle| \ \textit{n} \in \mathbb{N}\right\} \neq \emptyset \end{split}$$

$$\begin{split} \mathcal{M}_1 \in P \Leftrightarrow \mathcal{L}(\mathcal{M}_1) \cap \left\{ \alpha^{2n} \ \middle| \ n \in \mathbb{N} \right\} \neq \emptyset \\ \Leftrightarrow \mathcal{L}(\mathcal{M}_2) \cap \left\{ \alpha^{2n} \ \middle| \ n \in \mathbb{N} \right\} \neq \emptyset \Leftrightarrow \mathcal{M}_2 \in \textit{P}. \end{split}$$

olimits Donc P est une propriété des langages, et $\langle \{\mathcal{M} \mid \mathcal{M} \text{ machine sur } \{a\} \}, P \rangle$ est un problème de langage.

Preuve du théorème

On va commencer par prouver un résultat un peu plus faible. Fixons un alphabet Σ arbitraire. On définit la machine $\mathcal{M}_\emptyset := \langle \{q_0\}, \Sigma, \Sigma \cup \{\sharp\}, \emptyset, q_0, \emptyset \rangle$:

$$\mathcal{M}_{\emptyset} := \longrightarrow q_0$$

Remarquons que $\mathcal{L}(\mathcal{M}_{\emptyset})=\emptyset$.

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_\emptyset \notin P$. Alors \mathscr{Q} est indécidable.

Preuve du théorème

Si $\mathcal{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathcal{P} est indécidable.

Preuve

Foil $\mathcal P$ un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal H_{\varepsilon}:=\{\mathcal M \text{ sur } \Sigma \mid \varepsilon \in \mathcal L(\mathcal M)\}.$

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Foit \mathcal{P} un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal{H}_{\varepsilon} := \{ \mathcal{M} \text{ sur } \Sigma \mid \varepsilon \in \mathcal{L}(\mathcal{M}) \}$.
- Pour cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Soit $\mathcal P$ un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal H_{\varepsilon}:=\{\mathcal M \text{ sur } \Sigma \mid \varepsilon\in \mathcal L(\mathcal M)\}$.
- Pour cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :
 - \mathcal{M}' est une machine de Turing sur l'alphabet Σ ,

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Soit \mathcal{P} un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal{H}_{\varepsilon} := \{\mathcal{M} \text{ sur } \Sigma \mid \varepsilon \in \mathcal{L}(\mathcal{M})\}.$
- Pour cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :
 - \mathcal{M}' est une machine de Turing sur l'alphabet Σ ,
 - $\varepsilon \in \mathcal{L}(\mathcal{M}) \Leftrightarrow \mathcal{M}' \in P$.

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Soit $\mathcal P$ un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal H_{\varepsilon}:=\{\mathcal M \text{ sur } \Sigma \mid \varepsilon \in \mathcal L(\mathcal M)\}.$
- Pour cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :
 - \mathcal{M}' est une machine de Turing sur l'alphabet Σ ,
 - $\varepsilon \in \mathcal{L}(\mathcal{M}) \Leftrightarrow \mathcal{M}' \in P$,
 - la fonction est calculable.

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Soit \mathcal{P} un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal{H}_{\varepsilon} := \{\mathcal{M} \text{ sur } \Sigma \mid \varepsilon \in \mathcal{L}(\mathcal{M})\}.$
- Four cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :
 - \mathcal{M}' est une machine de Turing sur l'alphabet Σ ,
 - $-\varepsilon\in\mathcal{L}(\mathcal{M})\Leftrightarrow\mathcal{M}'\in P$,
 - la fonction est calculable.
- Fin fait, on va décrire la machine \mathcal{M}' produite à partir d'une machine d'entrée \mathcal{M} , et on va se convaincre que l'on pourrait réaliser cette construction à partir du code de \mathcal{M} .

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Soit \mathcal{P} un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal{H}_{\varepsilon} := \{ \mathcal{M} \text{ sur } \Sigma \mid \varepsilon \in \mathcal{L}(\mathcal{M}) \}.$
- Four cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :
 - \mathcal{M}' est une machine de Turing sur l'alphabet Σ ,
 - $-\varepsilon\in\mathcal{L}(\mathcal{M})\Leftrightarrow\mathcal{M}'\in\mathit{P},$
 - la fonction est calculable.
- En fait, on va décrire la machine \mathcal{M}' produite à partir d'une machine d'entrée \mathcal{M} , et on va se convaincre que l'on pourrait réaliser cette construction à partir du code de \mathcal{M} .
- Comme $\mathcal{M}_{\emptyset} \notin P$, et comme \mathscr{P} est non-trivial, alors il existe une machine $\mathcal{M}_{\mathsf{oui}} \in P$.

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Soit \mathcal{P} un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal{H}_{\varepsilon} := \{\mathcal{M} \text{ sur } \Sigma \mid \varepsilon \in \mathcal{L}(\mathcal{M})\}.$
- Four cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :
 - \mathcal{M}' est une machine de Turing sur l'alphabet Σ ,
 - $-\varepsilon\in\mathcal{L}(\mathcal{M})\Leftrightarrow\mathcal{M}'\in\mathit{P}$,
 - la fonction est calculable.
- En fait, on va décrire la machine \mathcal{M}' produite à partir d'une machine d'entrée \mathcal{M} , et on va se convaincre que l'on pourrait réaliser cette construction à partir du code de \mathcal{M} .
- Comme $\mathcal{M}_{\emptyset} \notin P$, et comme \mathcal{P} est non-trivial, alors il existe une machine $\mathcal{M}_{\mathsf{oui}} \in P$.
- Foit en entrée une machine avec un seul ruban \mathcal{M} . On construit la machine \mathcal{M}' avec deux rubans, et qui reçoit son entrée sur le premier ruban :

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Soit \mathcal{P} un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal{H}_{\varepsilon} := \{ \mathcal{M} \text{ sur } \Sigma \mid \varepsilon \in \mathcal{L}(\mathcal{M}) \}$.
- Four cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :
 - \mathcal{M}' est une machine de Turing sur l'alphabet Σ ,
 - $\varepsilon \in \mathcal{L}(\mathcal{M}) \Leftrightarrow \mathcal{M}' \in P$,
 - la fonction est calculable.
- En fait, on va décrire la machine \mathcal{M}' produite à partir d'une machine d'entrée \mathcal{M} , et on va se convaincre que l'on pourrait réaliser cette construction à partir du code de \mathcal{M} .
- **EXECUTE:** Comme $\mathcal{M}_{\emptyset} \notin P$, et comme \mathcal{P} est non-trivial, alors il existe une machine $\mathcal{M}_{\mathsf{oui}} \in P$.
- Soit en entrée une machine avec un seul ruban \mathcal{M} . On construit la machine \mathcal{M}' avec deux rubans, et qui reçoit son entrée sur le premier ruban :
 - 1) avant toute inspection du premier ruban, \mathcal{M}' utlise son second ruban (initialement vide) pour exécuter \mathcal{M}

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Soit \mathcal{P} un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal{H}_{\varepsilon} := \{ \mathcal{M} \text{ sur } \Sigma \mid \varepsilon \in \mathcal{L}(\mathcal{M}) \}$.
- Four cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :
 - \mathcal{M}' est une machine de Turing sur l'alphabet Σ ,
 - $\varepsilon \in \mathcal{L}(\mathcal{M}) \Leftrightarrow \mathcal{M}' \in P$,
 - la fonction est calculable.
- En fait, on va décrire la machine \mathcal{M}' produite à partir d'une machine d'entrée \mathcal{M} , et on va se convaincre que l'on pourrait réaliser cette construction à partir du code de \mathcal{M} .
- \mathscr{M} Comme $\mathcal{M}_{\emptyset} \notin P$, et comme \mathscr{P} est non-trivial, alors il existe une machine $\mathcal{M}_{\mathsf{oui}} \in P$.
- Soit en entrée une machine avec un seul ruban \mathcal{M} . On construit la machine \mathcal{M}' avec deux rubans, et qui reçoit son entrée sur le premier ruban :
 - 1) avant toute inspection du premier ruban, \mathcal{M}' utlise son second ruban (initialement vide) pour exécuter \mathcal{M}
 - 2) Si cette exécution se termine sur un état acceptant, \mathcal{M}' exécute alors \mathcal{M}_{oui} sur son premier ruban.

Si $\mathscr{P}=\langle I,P\rangle$ est un problème de langage non-trivial et si $\mathcal{M}_\emptyset\notin P$, alors \mathscr{P} est indécidable.

- Soit \mathcal{P} un tel problème. On va procéder par réduction depuis le problème de l'arrêt sur le mot vide : $\mathcal{H}_{\varepsilon} := \{ \mathcal{M} \text{ sur } \Sigma \mid \varepsilon \in \mathcal{L}(\mathcal{M}) \}$.
- Four cela, on va construire une fonction qui transforme un mot $[\mathcal{M}]_{code}$, avec \mathcal{M} une machine de Turing sur l'alphabet Σ , en un mot $[\mathcal{M}']_{code}$, telle que :
 - \mathcal{M}' est une machine de Turing sur l'alphabet Σ ,
 - $\varepsilon \in \mathcal{L}(\mathcal{M}) \Leftrightarrow \mathcal{M}' \in P$,
 - la fonction est calculable.
- En fait, on va décrire la machine \mathcal{M}' produite à partir d'une machine d'entrée \mathcal{M} , et on va se convaincre que l'on pourrait réaliser cette construction à partir du code de \mathcal{M} .
- \mathscr{M} Comme $\mathcal{M}_{\emptyset} \notin P$, et comme \mathscr{P} est non-trivial, alors il existe une machine $\mathcal{M}_{\mathsf{oui}} \in P$.
- Foit en entrée une machine avec un seul ruban \mathcal{M} . On construit la machine \mathcal{M}' avec deux rubans, et qui reçoit son entrée sur le premier ruban :
 - 1) avant toute inspection du premier ruban, \mathcal{M}' utlise son second ruban (initialement vide) pour exécuter \mathcal{M}
 - 2) Si cette exécution se termine sur un état acceptant, \mathcal{M}' exécute alors \mathcal{M}_{oui} sur son premier ruban.
 - 3) Les états acceptants de \mathcal{M}' sont ceux de \mathcal{M}_{oui} .

 $\text{ {\it Construction de }}[\mathcal{M}']_{code} \text{ à partir de code } [\mathcal{M}]_{code} \text{ (et de } [\mathcal{M}_{\text{oui}}]_{code}):$

- $\text{ Construction de } [\mathcal{M}']_{\textit{code}} \text{ à partir de code } [\mathcal{M}]_{\textit{code}} \text{ (et de } [\mathcal{M}_{\textit{oui}}]_{\textit{code}}):$
 - Renuméroter les états de $\mathcal{M}_{\mathsf{oui}}$ pour que $Q_{\mathcal{M}} \cap Q_{\mathcal{M}_{\mathsf{oui}}} = \emptyset$.
 - Transformer les transitions $p \xrightarrow{a/b, M} q$ en transitions $p \xrightarrow{a/b, M} M q$.

- $\text{ {\it Construction de }}[\mathcal{M}']_{\textit{code}} \text{ à partir de code } [\mathcal{M}]_{\textit{code}} \text{ (et de } [\mathcal{M}_{\textit{oui}}]_{\textit{code}}):$
 - Renuméroter les états de $\mathcal{M}_{ ext{oui}}$ pour que $Q_{\mathcal{M}}\cap Q_{\mathcal{M}_{ ext{oui}}}=\emptyset$.
 - Transformer les transitions $p \xrightarrow{a/b, M} q$ en transitions $p \xrightarrow{a/b, M} M q$.
 - Transformer les transitions $p \xrightarrow{a/b, M}_{\mathcal{M}_{\mathrm{oui}}} q$ en transitions $p \xrightarrow{\begin{subarray}{c} \mathbf{q} \\ \#, \mbox{ψ} \end{subarray}}_{\mathcal{M}'} q$.

 $\operatorname{\mathfrak{lim}}$ Construction de $[\mathcal{M}']_{code}$ à partir de code $[\mathcal{M}]_{code}$ (et de $[\mathcal{M}_{oui}]_{code}$) :

- Renuméroter les états de $\mathcal{M}_{ ext{oui}}$ pour que $Q_{\mathcal{M}} \cap Q_{\mathcal{M}_{ ext{oui}}} = \emptyset$.
- Transformer les transitions $p \xrightarrow{a/b, M} q$ en transitions $p \xrightarrow{a/b, M} M q$.
- Transformer les transitions $p \xrightarrow{a/b, M}_{\mathcal{M}_{\mathrm{oui}}} q$ en transitions $p \xrightarrow{\begin{subarray}{c} Q \\ \#/\#, \Psi \end{subarray}} \mathcal{M}' \ q.$
- Ajouter des transitions $q_f \xrightarrow{\stackrel{\#}{d}/\stackrel{\#}{d}: \blacktriangledown}_{\mathcal{M}'} q_0^{\mathsf{oui}}$ pour tout $q_f \in \mathcal{F}_{\mathcal{M}}$.

- lacktriangledown Construction de $[\mathcal{M}']_{code}$ à partir de code $[\mathcal{M}]_{code}$ (et de $[\mathcal{M}_{oui}]_{code}$) :
 - Renuméroter les états de $\mathcal{M}_{\mathsf{oui}}$ pour que $Q_{\mathcal{M}} \cap Q_{\mathcal{M}_{\mathsf{oui}}} = \emptyset$.
 - Transformer les transitions $p \xrightarrow{a/b, M} q$ en transitions $p \xrightarrow{a/b, M} M q$.
 - Transformer les transitions $p \xrightarrow{a/b, M}_{\mathcal{M}_{\mathrm{oui}}} q$ en transitions $p \xrightarrow{\overset{\mathbf{Q}}{\#} / \overset{\mathbf{b}}{\#}, \overset{\mathbf{M}}{\Psi}}_{\mathcal{M}'} q$.
 - Ajouter des transitions $q_f \xrightarrow{\stackrel{\#}{0}/\stackrel{\#}{0}, \blacktriangledown}_{\mathcal{M}'} q_0^{\mathsf{oui}}$ pour tout $q_f \in \mathcal{F}_{\mathcal{M}}$.
- Il est donc raisonnable de considérer que cette fonction est calculable.

lacksquare Analysons le comportement de \mathcal{M}' sur une entrée $w\in \Sigma^\star$:

 \mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$,
 - alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.

Calculabilité et Complexité : Indécidabilité

lacksquare Analysons le comportement de \mathcal{M}' sur une entrée $w\in\Sigma^\star$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si $\varepsilon \notin \mathcal{L}(\mathcal{M})$, alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle. Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant. Donc $w \notin \mathcal{L}(\mathcal{M}')$.

lacksquare Analysons le comportement de \mathcal{M}' sur une entrée $w\in\Sigma^\star$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si $\varepsilon \notin \mathcal{L}(\mathcal{M})$, alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle. Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant. Donc $w \notin \mathcal{L}(\mathcal{M}')$.

$$\mathcal{M} \in \mathcal{H}_{\varepsilon}$$

\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

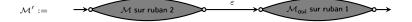
- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si $\varepsilon \notin \mathcal{L}(\mathcal{M})$, alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle. Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant. Donc $w \notin \mathcal{L}(\mathcal{M}')$.

$$\mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M})$$

\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si ε ∉ L(M), alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle.
 Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant.
 Donc w ∉ L(M').

$$\mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M}) \Rightarrow \left(\forall w \in \Sigma^{\star}, \ w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui}) \right)$$



\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si ε ∉ L(M), alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle.
 Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant.
 Donc w ∉ L(M').

$$\mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M}) \Rightarrow \left(\forall w \in \Sigma^{\star}, \ w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui}) \right)$$
$$\Leftrightarrow \mathcal{L}(\mathcal{M}') = \mathcal{L}(\mathcal{M}_{oui})$$

\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si ε ∉ L(M), alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle.
 Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant.
 Donc w ∉ L(M').

$$\mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M}) \Rightarrow \left(\forall w \in \Sigma^{\star}, \ w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui}) \right)$$
$$\Leftrightarrow \mathcal{L}(\mathcal{M}') = \mathcal{L}(\mathcal{M}_{oui})$$
$$\Rightarrow \mathcal{M}' \in P$$

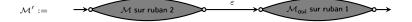
\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si ε ∉ L(M), alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle.
 Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant.
 Donc w ∉ L(M').

Autrement dit :

$$\begin{split} \mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M}) \Rightarrow \left(\forall w \in \Sigma^{\star}, \ w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui}) \right) \\ \Leftrightarrow \mathcal{L}(\mathcal{M}') = \mathcal{L}(\mathcal{M}_{oui}) \\ \Rightarrow \mathcal{M}' \in \textit{P} \end{split}$$

 $\mathcal{M} \notin \mathcal{H}_{\varepsilon}$



\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si ε ∉ L(M), alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle.
 Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant.
 Donc w ∉ L(M').

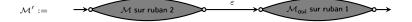
$$\begin{split} \mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M}) \Rightarrow \left(\forall w \in \Sigma^{\star}, \, w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui}) \right) \\ \Leftrightarrow \mathcal{L}(\mathcal{M}') = \mathcal{L}(\mathcal{M}_{oui}) \\ \Rightarrow \mathcal{M}' \in \textit{P} \end{split}$$

$$\mathcal{M} \notin \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \notin \mathcal{L}(\mathcal{M})$$

\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si ε ∉ L(M), alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle.
 Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant.
 Donc w ∉ L(M').

$$\begin{split} \mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M}) \Rightarrow \left(\forall w \in \Sigma^{\star}, \ w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui}) \right) \\ \Leftrightarrow \mathcal{L}(\mathcal{M}') = \mathcal{L}(\mathcal{M}_{oui}) \\ \Rightarrow \mathcal{M}' \in P \\ \mathcal{M} \notin \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \notin \mathcal{L}(\mathcal{M}) \Rightarrow \forall w \in \Sigma^{\star}, \ w \notin \mathcal{L}(\mathcal{M}') \end{split}$$



\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si ε ∉ L(M), alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle.
 Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant.
 Donc w ∉ L(M').

$$\begin{split} \mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M}) \Rightarrow \left(\forall w \in \Sigma^{\star}, \, w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui}) \right) \\ \Leftrightarrow \mathcal{L}(\mathcal{M}') = \mathcal{L}(\mathcal{M}_{oui}) \\ \Rightarrow \mathcal{M}' \in \mathcal{P} \\ \mathcal{M} \notin \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \notin \mathcal{L}(\mathcal{M}) \Rightarrow \forall w \in \Sigma^{\star}, \, w \notin \mathcal{L}(\mathcal{M}') \\ \Leftrightarrow \mathcal{L}(\mathcal{M}') = \emptyset = \mathcal{L}(\mathcal{M}_{\emptyset}) \end{split}$$

\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si ɛ ∉ L(M),
 alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle.
 Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant.
 Donc w ∉ L(M').

$$\begin{split} \mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M}) \Rightarrow \left(\forall w \in \Sigma^{\star}, \ w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui}) \right) \\ \Leftrightarrow \mathcal{L}(\mathcal{M}') = \mathcal{L}(\mathcal{M}_{oui}) \\ \Rightarrow \mathcal{M}' \in P \\ \mathcal{M} \notin \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \notin \mathcal{L}(\mathcal{M}) \Rightarrow \forall w \in \Sigma^{\star}, \ w \notin \mathcal{L}(\mathcal{M}') \\ \Leftrightarrow \mathcal{L}(\mathcal{M}') = \emptyset = \mathcal{L}(\mathcal{M}_{\emptyset}) \\ \Rightarrow \mathcal{M}' \notin P \end{split}$$

\mathcal{M} Analysons le comportement de \mathcal{M}' sur une entrée $w \in \Sigma^*$:

- Si $\varepsilon \in \mathcal{L}(\mathcal{M})$, alors l'étape 1 se termine dans un état acceptant de \mathcal{M} , et on passe à l'étape 2. Dans ce cas, $w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui})$.
- Si $\varepsilon \notin \mathcal{L}(\mathcal{M})$, alors soit l'étape 1 se bloque sur un état non-acceptant, soit elle boucle. Dans les deux cas, on évite l'étape 2, et on ne visite jamais d'état acceptant. Donc $w \notin \mathcal{L}(\mathcal{M}')$.

$$\begin{split} \mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \in \mathcal{L}(\mathcal{M}) &\Rightarrow \left(\forall w \in \Sigma^{\star}, \, w \in \mathcal{L}(\mathcal{M}') \Leftrightarrow w \in \mathcal{L}(\mathcal{M}_{oui}) \right) \\ &\Leftrightarrow \mathcal{L}(\mathcal{M}') = \mathcal{L}(\mathcal{M}_{oui}) \\ &\Rightarrow \mathcal{M}' \in P \\ \mathcal{M} \notin \mathcal{H}_{\varepsilon} \Leftrightarrow \varepsilon \notin \mathcal{L}(\mathcal{M}) \Rightarrow \forall w \in \Sigma^{\star}, \, w \notin \mathcal{L}(\mathcal{M}') \\ &\Leftrightarrow \mathcal{L}(\mathcal{M}') = \emptyset = \mathcal{L}(\mathcal{M}_{\emptyset}) \\ &\Rightarrow \mathcal{M}' \notin P \\ \mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \mathcal{M}' \in P \end{split}$$

On a donc une fonction $\rho: [\mathcal{M}]_{code} \mapsto [\mathcal{M}']_{code}$ calculable telle que $\forall \mathcal{M}, \ \mathcal{M} \in \mathcal{H}_s \Leftrightarrow \mathcal{M}' \in P.$

 $\operatorname{\hspace{0.3mm}l\hspace{0.4mm}l\hspace{0.4mm}}$ Cette fonction est donc une réduction $\mathcal{H}_{\varepsilon} o \mathcal{P}.$

Solution On a donc une fonction $ho: [\mathcal{M}]_{code} \mapsto [\mathcal{M}']_{code}$ calculable telle que

$$\forall \mathcal{M}, \ \mathcal{M} \in \mathcal{H}_{\varepsilon} \Leftrightarrow \mathcal{M}' \in \textit{P}.$$

- $\operatorname{\hspace{1.5pt}\hspace{$
- **E** Comme $\mathcal{H}_{\varepsilon}$ est indécidable, \mathcal{P} est également indécidable.

On vient d'établir le lemme suivant :

lemme

Soit $\mathcal{P}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathcal{P} est non-trivial et $\mathcal{M}_\emptyset \notin P$. Alors \mathcal{P} est indécidable.

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_{\emptyset}\notin P$. Alors \mathscr{Q} est indécidable.

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_{\emptyset}\notin P$. Alors \mathscr{Q} est indécidable.

Et si $\mathcal{M}_{\emptyset} \in P$?

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_{\emptyset}\notin P$. Alors \mathscr{Q} est indécidable.

Et si $\mathcal{M}_{\emptyset} \in P$?

From On note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.

EXECUTE: Comme P est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.

П

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_{\emptyset}\notin P$. Alors \mathscr{Q} est indécidable.

Et si $\mathcal{M}_{\emptyset} \in P$?

If On note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.

Solution Comme \mathcal{P} est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.

From Donc P' est également non-trivial, puisque $i_- \in I \setminus P = P'$ et $i_+ \notin I \setminus P = P'$.

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_{\emptyset}\notin P$. Alors \mathscr{Q} est indécidable.

Et si $\mathcal{M}_{\emptyset} \in P$?

• On note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.

Solution Comme \mathcal{P} est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.

Donc \underline{P}' est également non-trivial, puisque $i_- \in I \setminus P = P'$ et $i_+ \notin I \setminus P = P'$.

$$\mathcal{M}_1 \in P'$$

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_{\emptyset}\notin P$. Alors \mathscr{Q} est indécidable.

Et si $\mathcal{M}_{\emptyset} \in P$?

• On note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.

EXECUTE: Comme \mathcal{P} est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.

Donc \underline{P}' est également non-trivial, puisque $i_- \in I \setminus P = P'$ et $i_+ \notin I \setminus P = P'$.

$$\mathcal{M}_1 \in P' \Leftrightarrow \mathcal{M}_1 \notin P$$

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_\emptyset \notin P$. Alors \mathscr{Q} est indécidable.

Et si $\mathcal{M}_{\emptyset} \in P$?

• On note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.

Solution Comme \mathcal{P} est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.

Donc \underline{P}' est également non-trivial, puisque $i_- \in I \setminus P = P'$ et $i_+ \notin I \setminus P = P'$.

$$\mathcal{M}_1 \in P' \Leftrightarrow \mathcal{M}_1 \notin P \Leftrightarrow \mathcal{M}_2 \notin P$$

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_{\emptyset}\notin P$. Alors \mathscr{Q} est indécidable.

Et si $\mathcal{M}_{\emptyset} \in P$?

• On note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.

Solution Comme \mathcal{P} est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.

From Donc P' est également non-trivial, puisque $i_- \in I \setminus P = P'$ et $i_+ \notin I \setminus P = P'$.

$$\mathcal{M}_1 \in P' \Leftrightarrow \mathcal{M}_1 \notin P \Leftrightarrow \mathcal{M}_2 \notin P \Leftrightarrow \mathcal{M}_2 \in P'$$

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_{\emptyset}\notin P$. Alors \mathscr{Q} est indécidable.

Et si $\mathcal{M}_{\emptyset} \in P$?

- on note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.
- Comme \mathcal{P} est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.
- Donc \underline{P}' est également non-trivial, puisque $i_- \in I \setminus P = P'$ et $i_+ \notin I \setminus P = P'$.
- Soient deux machines $\mathcal{M}_1, \mathcal{M}_2$ telles que $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$:

$$\mathcal{M}_1 \in P' \Leftrightarrow \mathcal{M}_1 \notin P \Leftrightarrow \mathcal{M}_2 \notin P \Leftrightarrow \mathcal{M}_2 \in P'$$

From Donc \mathcal{P}' est un problème de langages.

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_\emptyset \notin P$. Alors \mathscr{Q} est indécidable.

- On note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.
- **EXECUTE:** Comme \mathcal{P} est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.
- From Donc P' est également non-trivial, puisque $i_- \in I \setminus P = P'$ et $i_+ \notin I \setminus P = P'$.
- Soient deux machines $\mathcal{M}_1, \mathcal{M}_2$ telles que $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$:

$$\mathcal{M}_1 \in P' \Leftrightarrow \mathcal{M}_1 \notin P \Leftrightarrow \mathcal{M}_2 \notin P \Leftrightarrow \mathcal{M}_2 \in P'$$

- From Donc P' est un problème de langages.
- Fuisque $\mathcal{M}_{\emptyset} \in P$, on sait que $\mathcal{M}_{\emptyset} \notin P'$.

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_\emptyset \notin P$. Alors \mathscr{Q} est indécidable.

- on note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.
- Comme \mathcal{P} est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.
- Donc \underline{P}' est également non-trivial, puisque $i_- \in I \setminus P = P'$ et $i_+ \notin I \setminus P = P'$.
- Soient deux machines $\mathcal{M}_1, \mathcal{M}_2$ telles que $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$:

$$\mathcal{M}_1 \in P' \Leftrightarrow \mathcal{M}_1 \notin P \Leftrightarrow \mathcal{M}_2 \notin P \Leftrightarrow \mathcal{M}_2 \in P'$$

- From Donc \mathcal{P}' est un problème de langages.
- Fuisque $\mathcal{M}_{\emptyset} \in P$, on sait que $\mathcal{M}_{\emptyset} \notin P'$.
- \mathcal{L} On peut donc appliquer le lemme, et obtenir que \mathcal{L} est indécidable.

On vient d'établir le lemme suivant :

lemme

Soit $\mathscr{Q}=\langle I,P\rangle$ un problème de langage des machines de Turing sur Σ , tel que \mathscr{Q} est non-trivial et $\mathcal{M}_\emptyset \notin P$. Alors \mathscr{Q} est indécidable.

- \mathbb{F} On note $P' = I \setminus P$, et on considère le problème $\mathcal{P}' = \langle I, P' \rangle$.
- **Solution** Comme \mathcal{P} est non-trivial, il existe $i_-, i_+ \in I$ tels que $i_- \notin P$ et $i_+ \in P$.
- From Donc P' est également non-trivial, puisque $i_- \in I \setminus P = P'$ et $i_+ \notin I \setminus P = P'$.
- Soient deux machines $\mathcal{M}_1, \mathcal{M}_2$ telles que $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$:

$$\mathcal{M}_1 \in P' \Leftrightarrow \mathcal{M}_1 \notin P \Leftrightarrow \mathcal{M}_2 \notin P \Leftrightarrow \mathcal{M}_2 \in P'$$

- From \mathcal{P}' est un problème de langages.
- Fuisque $\mathcal{M}_{\emptyset} \in P$, on sait que $\mathcal{M}_{\emptyset} \notin P'$.
- lacksquare On peut donc appliquer le lemme, et obtenir que P' est indécidable.
- lacktriangle Le complémentaire d'un problème indécidable étant indécidable, $\underline{\mathscr{P}}$ est indécidable.